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Abstract

The intrinsic functional organization of the brain changes into older adulthood. Age differences
are observed at multiple spatial scales, from global reductions in modularity and segregation of
distributed brain systems, to network-specific patterns of dedifferentiation. Whether
dedifferentiation reflects an inevitable, global shift in brain function with age, circumscribed,
experience dependent changes, or both, is uncertain. We employed a multi-method strategy to
interrogate dedifferentiation at multiple spatial scales. Multi-echo (ME) resting-state fMRI was
collected in younger (n=181) and older (n=120) healthy adults. Cortical parcellation sensitive to
individual variation was implemented for precision functional mapping of each participant, while
preserving group-level parcel and network labels. ME-fMRI processing and gradient mapping
identified global and macroscale network differences. Multivariate functional connectivity
methods tested for microscale, edge-level differences. Older adults had lower BOLD signal
dimensionality, consistent with global network dedifferentiation. Gradients were largely
age-invariant. Edge-level analyses revealed discrete, network-specific dedifferentiation patterns
in older adults. Visual and somatosensory regions were more integrated within the functional
connectome; default and frontoparietal control network regions showed greater connectivity; and
the dorsal attention network was more integrated with heteromodal regions. These findings
highlight the importance of multi-scale, multi-method approaches to characterize the architecture
of functional brain aging.

Keywords
connectivity, gradients, parcellation, network neuroscience, multi-echo fMRI

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Spontaneous oscillations in brain activity provide the basis for characterizing large-scale

functional networks (Biswal et al., 2010; Fox and Raichle, 2007; Yeo et al., 2011). This intrinsic

functional network architecture is determined by both genetic factors and experience-dependent

neuroplastic changes occurring across timescales, from moments to decades (Stevens and

Spreng, 2014). Key organizational features of the intrinsic aging connectome include reduced

within- and greater between- network connectivity (Chan et al., 2014; Geerligs et al., 2015),

resulting in a dedifferentiated, or less segregated, network architecture (Wig, 2017).

There is now abundant evidence that intrinsic network dedifferentiation is a global

feature of functional brain aging (Chan et al., 2014; Geerligs et al., 2015; Stumme et al., 2020

and see Damoiseaux, 2017; Wig, 2017 for reviews). This may reflect functional reorganization in

response to systemic structural, neurophysiological or metabolic alterations occurring with age

(Reuter-Lorenz and Park, 2014), paralleling the loss of functional specialization within specific

brain regions (Cabeza et al., 2002; Park et al., 2004; Rajah and D’Esposito, 2005). These global

network changes suggest that network dedifferentiation may be a nonspecific neural marker,

paralleling other gross indicators of declining brain health in later life. However, such

non-specific changes may also reflect systematic, age-related confounds in data acquisition,

processing and analytic approaches to interrogating resting-state fMRI data (Liem et al., 2021 for

a review). The most prominent of these is age-related differences in motion (D’Esposito et al.,

1999; Geerligs et al., 2015) that introduce spurious age-related differences in connectivity

patterns (Power et al., 2012, 2014). These and other confounds highlight the need for rigorous

denoising of resting-state fMRI data and pose significant challenges for the field (Power et al.,

2018; Spreng et al., 2019).
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In contrast to global network changes, there is growing evidence for network-specific

patterns of dedifferentiation. Age-related dedifferentiation has been reported among specific

association networks (Betzel et al., 2014; Ferriera et al., 2016; Keller et al., 2015; Malagurski et

al., 2020; Ng et al., 2016; Rieck et al., 2017; Spreng et al., 2018; Zonneveld et al., 2020) as well

as between association and sensorimotor networks (Chan et al., 2014; King et al., 2018; Manza

et al., 2020; Meier et al., 2012; Seidler et al., 2015; Song et al., 2014; Stumme et al., 2020).

Among the most commonly observed patterns of network-specific dedifferentiation with age is

reduced anticorrelation in BOLD signal between the default and dorsal attention networks

(Ferreira et al., 2016, Geerligs et al., 2015; Spreng et al., 2016). These canonical brain networks

are strongly anticorrelated at rest and during most tasks in younger adults (Fox et al, 2005; Toro

et al., 2008; but see Dixon et al., 2017).

Evidence for integration between specific networks hint at a role for resting-state

functional connectivity (RSFC) fMRI beyond that of a global indicator of aging brain health.

Rather, these specific dedifferentiation patterns may serve as neural markers of domain-specific

cognitive changes in later life. Indeed, dissociable patterns of network dedifferentiation have

been related to age differences in visuospatial ability (Manza et al., 2020), motor functioning

(King et al., 2018), episodic memory (Andrews-Hanna et al., 2007; Chan et al., 2014; Spreng et

al., 2018), processing speed (Geerligs et al., 2015; Malagurski et al., 2020; Ng et al., 2016) and

executive functioning (Keller et al., 2015; Stumme et al., 2020). Chan and colleagues (2014)

provided early evidence that network-specific dedifferentiation patterns were a marker of

domain-specific neurocognitive aging. They observed a global pattern of network

dedifferentiation (i.e., reduced segregation) that was associated with lower episodic memory

ability. However, this relationship was stronger for association networks than for sensorimotor
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networks, showing that dedifferentiation among cortical association networks was both a

sensitive and specific marker of age-related memory decline. We have reported similar findings,

showing that age-related increases in connectivity between the default network and frontal

regions are associated with lower fluid cognition, as well as specific differences in the nature and

content of personal past remembrances in older adults (Spreng et al., 2018).

These reports (and numerous others) suggest that changes to the intrinsic network

organization of the brain can provide both global and network-specific markers of

neurocognitive aging. However, the range of theoretical, empirical and methodological

differences across RSFC studies, as well as numerous analytical challenges, have precluded

precise mapping of age-related differences in network organization. Such precision is critically

necessary to develop sensitive and specific markers of neurocognitive aging. Here we present an

integrated, cross-method study interrogating patterns of network dedifferentiation in a

well-powered sample of younger and older adults. We took three approaches to investigate

dedifferentiation across multiple spatial scales from global to edgel-level differences, while

attempting to mitigate several of the most common analytical challenges. We briefly describe

each method and associated hypotheses below. An overview schematic of our analytic approach

is presented in Figure 1. Specific methodological details are included in the respective Methods

sections.

We first examined global network dedifferentiation by measuring differences in

spatiotemporal patterns of BOLD signal covariance across the cortex, a measure we refer to as

BOLD dimensionality. Innovations in multi-echo fMRI (ME-fMRI) data acquisition protocols,

combined with a TE-dependence model of BOLD signal denoising using multi-echo independent

components analysis (ME-ICA), enables reliable separation of BOLD from non-BOLD (i.e.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


noise) signals into different components (Kundu et al., 2017). Emerging evidence suggests that

the number of BOLD components, or BOLD dimensionality, is a biologically meaningful metric,

showing declines from childhood into middle-age, reflecting greater functional integration and

the development of spatially distributed and segregated large-scale networks (Kundu et al.,

2018). While this metric has not heretofore been examined in older adulthood, we predicted that

BOLD dimensionality, as a proxy for global network dedifferentiation, will be significantly

lower for older versus younger adults, consistent with previous reports of age-related network

dedifferentiation (Betzel et al., 2014; Chan et al., 2014; Geerligs et al., 2015; Madden et al.,

2020; Malagurski et al., 2020; Ng et al., 2016; Stumme et al., 2020; Zonneveld et al., 2019).

Second, we investigated age differences in network dedifferentiation at the macroscale

level using a diffusion map embedding approach to estimate RSFC cortical gradients

(Huntenburg et al., 2018; Margulies et al., 2016; Paquola et al., 2019; Vos de Wael et al., 2020).

Gradient mapping identifies eigenvectors that describe transitions in regional connectivity

patterns across the cortical mantle, with a principal RSFC eigenvector solution often

differentiating sensory/motor and transmodal cortex (Margulies et al., 2016). As gradients are

robust organizational features of the connectome, we predicted that these patterns would be

largely resistant to normal age-related changes. However, changes may emerge for

regionally-specific connectivity profiles within the macroscale gradient architecture, reflecting

network or node specific shifts occurring within an age-invariant macroscale network

organization (Bethlehem et al., 2020).

Third, we examined age differences in dedifferentiation patterns identified with

unthresholded, edge-level connectomics using Partial Least Squares (PLS) analyses (Krishnan et

al., 2011; McIntosh and Misic, 2013). PLS is a multivariate approach that can analyze the full
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edge-level connectivity matrix in a single statistical step, eliminating the need for additional

thresholding within an a priori defined network parcellation scheme, enabling us to identify

reliable age differences across the full matrix. This provided edge-level precision to detect age

differences in the organization of functional brain networks, including patterns of network

dedifferentiation. We first examined edge-level connectomics within a canonical seven-network

solution (Yeo et al., 2011). We predicted reduced within- and increased between- network

connectivity, as reported previously and reviewed above. As we are not aware of any previous

studies reporting statistically reliable patterns of unthresholded, edgewise connections, we also

anticipated that novel age differences would emerge. Finally, based on previous work (Spreng et

al., 2013; Spreng et al., 2016; Grady et al., 2016), we conducted an a priori analysis of the

sub-network topography for the default, dorsal attention, and frontoparietal control networks,

derived from the 17-network solution by Yeo and colleagues (2011). Here we predicted lower

within-network connectivity with age, reduced anticorrelation between default and dorsal

attention networks, and greater between-network connectivity of the frontoparietal control

network with both default and dorsal attention network regions.

Combined, these techniques provide a broad window into the functional architecture of

the aging brain, spanning global covariance patterns across the cortex to precision-mapping of

edge-level connections. By implementing an integrated, multiscale analytical approach in a

well-powered sample of cognitively normal older and younger adults we aimed to characterize

both global and specific patterns of RSFC dedifferentiation in the functional architecture of the

aging brain.
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Figure 1
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Figure 1 Caption: Workflow of study methods. (A) Processing of multi-echo resting-state fMRI images. For each
functional run, three echoes (TE1, TE2, TE3) were combined and denoised using multi-echo independent component
analysis (ME-ICA). The denoising process involved removing components with non-BOLD signal (noise) and
retaining the BOLD components. MEFC images are made up of the BOLD component coefficient sets. (B)
Individualized parcellations were generated. The MEFC data for all participants were resampled to a common
cortical surface. All participants were first initialized to a pre-defined cortical parcellation atlas (Schaefer atlas).
Parcellations were then refined by participant (subject-specific parcellation). For each participant, MEFC data were
extracted from and correlated with each parcel to create a subject-specific functional connectivity matrix. These
matrices were used to (C) compute cortical gradients in younger and older adults and (D) assess age-related
differences in functional connectivity using partial least squares, which performs a singular value decomposition
(SVD).
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Materials and Methods

Participants 

Participants were 181 younger (Mage=22.59y, SD=3.27; 57% female) and 120 older

(Mage=68.63y, SD=6.44; 55% female) healthy adults from Ithaca, New York, and Toronto,

Canada (Table 1), rendering a total sample size of 301. Standard inclusion and exclusion criteria

were implemented to ensure all participants were healthy without evidence of neurological,

psychiatric or other underlying medical conditions known to impact brain or cognitive

functioning. Specifically, participants were screened to rule out individuals with acute or chronic

psychiatric illness. Participants were also queried for current usage of medications for mood (e.g.

depression), thinking or mental abilities (e.g. attention deficit disorder) or having experienced

significant changes to health status within three months of the eligibility interview. Younger and

older participants were screened for depressive symptoms using the Beck Depression Inventory

(Beck et al., 1996) or the Geriatric Depression Scale (Yesavage et al., 1982), respectively. Two

older adults were excluded due to a rating of “moderate depression”. In order to screen for

normal cognitive functioning, participants were administered the Mini-Mental State Examination

(MMSE; Folstein et al., 1975; Myounger: 29.1; SDyounger: 1.2; Molder: 28.6; SDolder: 1.3) and NIH

cognition battery (Gershon et al., 2013). If participants performed below 27/30 on MMSE and

scored in the bottom 25th percentile of age-adjusted scores for fluid cognition index on the NIH

(Hacket et al., 2018; Scott et al., 2019), they were excluded. All participants were right-handed

with normal or corrected-to-normal vision. Procedures were administered in compliance with the

Institutional Review Board at Cornell University and the Research Ethics Board at York

University.
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Table 1 Note: Episodic Memory, Semantic Memory, and Executive Function are index scores. Processing Speed is a
z-score on Symbol Digit Modalities Task, Oral. * significant group differences. Education was not recorded for 14
participants. Age group differences in episodic memory, semantic memory, executive function, and processing speed
were tested in 283 participants. Positive T values reflect higher scores in younger adults, negative values reflect
higher scores in older adults. Statistical results were nearly identical when including sex, education, site, and
estimated whole brain volume as covariates in an ANCOVA.
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Cognitive Assessment

We first characterized our sample with a deep cognitive assessment. 283 of 301

individuals (163/181 younger adults, 120/120 older adults) underwent cognitive testing prior to

brain scanning. Index scores were created for cognitive domains of episodic memory, semantic

memory, executive function, and processing speed (descriptives in Table 1). Episodic memory

tasks included Verbal Paired Associates from the Wechsler Memory Scale-IV (Wechsler, 2009),

the Associative Recall Paradigm (Brainerd et al., 2014), and NIH Cognition Toolbox Rey

Auditory Verbal Learning and Picture Sequence Memory Tests (Gershon et al., 2013). Semantic

memory tasks included Shipley-2 Vocabulary (Shipley et al., 2009), and NIH Cognition Toolbox

Picture Vocabulary and Oral Reading Recognition Tests (Gershon et al., 2013). Executive

function comprised the Trail Making Test (B-A; Reitan, 1958), the Reading Span Task

(Daneman & Carpenter, 1980), NIH Cognition Toolbox Flanker Inhibitory Control and Attention

task, Dimensional Change Card Sort, and List Sort Working Memory Tests (Gershon et al.,

2013). Processing speed was tested with the Symbol Digit Modalities Test, Oral (Smith, 1982). 

All data were z-scored. Index scores represent the average z-score for all measures

included within a cognitive domain. Across the four domains, higher scores represent better

performance. Brain-behavior product-moment correlations were conducted at an alpha level of

.05 with 95% confidence intervals. Bonferroni adjustments for multiple comparisons were set at

p < .013 for the four index score tests.

Neuroimaging

Image Acquisition

Imaging data were acquired on a 3T GE750 Discovery series MRI scanner with a

32-channel head coil at the Cornell Magnetic Resonance Imaging Facility or on a 3T Siemens
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Tim Trio MRI scanner with a 32-channel head coil at the York University Neuroimaging Center

in Toronto. Scanning protocols were closely matched across sites. Anatomical scans at Cornell

were acquired using a T1-weighted volumetric magnetization prepared rapid gradient echo

sequence (TR=2530ms; TE=3.4ms; 7° flip angle; 1mm isotropic voxels, 176 slices, 5m25s) with

2x acceleration with sensitivity encoding. At York, anatomical scans were acquired using a

T1-weighted volumetric magnetization prepared rapid gradient echo sequence (TR=1900ms;

TE=2.52ms; 9° flip angle; 1mm isotropic voxels, 192 slices, 4m26s) with 2x acceleration and

generalized auto calibrating partially parallel acquisition (GRAPPA) encoding at an iPAT

acceleration factor of 2. Two 10m06s resting-state runs were acquired using a multi-echo (ME)

EPI sequence at Cornell University (TR=3000ms; TE1=13.7ms, TE2=30ms, TE3=47ms; 83° flip

angle; matrix size=72x72; field of view (FOV)=210mm; 46 axial slices; 3mm isotropic voxels;

204 volumes, 2.5x acceleration with sensitivity encoding) and York University (TR=3000ms;

TE1=14ms, TE2=29.96ms, TE3=45.92ms; 83° flip angle; matrix size=64x64; FOV=216mm; 43

axial slices; 3.4x3.4x3mm voxels; 200 volumes, 3x acceleration and GRAPPA encoding).

Participants were instructed to stay awake and lie still with their eyes open, breathing and

blinking normally in the darkened scanner bay.

Image Processing

Anatomical images were skull stripped using the default parameters in FSL BET (Smith,

2002). Brain-extracted anatomical and functional images were submitted to ME independent

component analysis (ME-ICA; version 3.2 beta; https://github.com/ME-ICA/me-ica; Kundu et

al., 2011; Kundu et al., 2013). ME-ICA relies on the TE-dependence model of BOLD signal to

determine T2* in every voxel and separates BOLD signal from non-BOLD sources of noise.

Prior to TE-dependent denoising, time series data were minimally preprocessed: the first 4
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volumes were discarded, images were computed for de-obliquing, motion correction, and

anatomical-functional coregistration, and volumes were brought into spatial alignment across

TEs. The T2* maps were then used for anatomical-functional coregistration. Grey matter and

cerebrospinal fluid compartments are more precisely delineated by the T2* map than by raw EPI

images (Speck et al., 2001; Kundu et al., 2017), which is an important consideration in aging

research where these boundaries are often blurred by enlarged ventricles and greater

subarachnoid space. Volumes were then optimally combined across TEs and denoised. The

outputs of interest included: 1) spatial maps consisting of the BOLD components, 2)

reconstructed time series containing only BOLD components, and 3) the BOLD component

coefficient sets.

Image quality assessment was performed on the denoised time series in native space to

identify and exclude participants with unsuccessful coregistration, residual noise (framewise

displacement > .50 mm coupled with denoised time series showing DVARS >1, Power et al.,

2012), temporal signal to noise ratio < 50, or fewer than 10 retained BOLD-like components (see

Supplementary Figure 1 for the group temporal signal to noise map). 

The denoised BOLD component coefficient sets in native space, optimized for functional

connectivity analyses (Kundu et al., 2013), were used in subsequent steps. We refer to these as

multi-echo functional connectivity (MEFC) data. Additional measures were taken to account for

variation in the number of independent components from ME-ICA once connectivity matrices

were estimated, as detailed below. MEFC neuroimages were mapped to a common cortical

surface for each participant using FreeSurfer v6.0.1 (Fischl et al., 2012). To maximize alignment

between intensity gradients of structural and functional data (Greve & Fischl, 2009), MEFC data

were first linearly registered to the T1-weighted image by run. The inverse of this registration
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was used to project the T1-weighted image to native space and resample the MEFC data onto a

cortical surface (fsaverage5) with trilinear volume-to-surface interpolation. This produces a

cortical surface map where each vertex, or surface point, is interpolated from the voxel data.

Once on the surface, runs were concatenated and MEFC data at each vertex were normalized to

zero mean and unit variance.

Individualized Parcellation. ME-fMRI processed data provides excellent reliability and

temporal signal-to-noise, sufficient for individual-subject precision mapping (Lynch et al., 2020;

Lynch, Elbau, and Liston, 2021). An individualized functional parcellation approach was

implemented to identify person-specific functional network nodes (Chong et al., 2017). These

individualized parcellations were used in both the gradient and edge-level connectivity analyses

to facilitate comparisons of RSFC between younger and older adults. Poor registration to

standardized templates may fail to capture individual variability in functional organization of the

cortex, and these registration problems may systematically differ across age groups (Braga and

Buckner, 2017; Chong et al., 2017; Gordon, et al. 2017; Kong et al., 2019; Kong et al., 2021;

Laumann et al., 2015; Wang et al., 2015). Deriving functionally-defined, person-specific cortical

parcellations can account for differences at the level of the individual, thereby mitigating

systematic registration biases in between-group comparisons. Adopting an individualized

parcellation approach may also lessen the impact of noise artifacts that can obscure small yet

reliable group differences, increasing power to detect reliable brain-behavior associations (Kong

et al., 2021).

We generated participant-specific functional parcellations to examine individual

differences in functional brain network organization using the Group Prior Individual

Parcellation (GPIP; Chong et al., 2017). This approach enables a more accurate estimation of
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participant-specific individual functional areas (Chong et al., 2017) and is more sensitive to

detecting RSFC associations with behavior (e.g. Kong et al., 2019; Mwilambwe-Tshilobo et al.,

2019). The main advantage of this approach is that the correspondence among parcel labels is

preserved across participants, while the parcel boundaries are allowed to shift based on the

individual-specific functional network organization of each participant—thus providing a

similar connectivity pattern that is shared across the population. Starting from an initial

pre-defined group parcellation atlas, GPIP first refines each individual’s parcel boundaries

relative to their resting-state fMRI data. Next, the concentration (inverse covariance/partial

correlation) matrices from all subjects are jointly estimated using a group sparsity constraint.

GPIP iterates between these two steps to continuously update the parcel labels until convergence,

defined as no more than one vertex changing per parcel or 40 iterations. Compared to other

group-based parcellation approaches, GPIP has shown to improve the homogeneity of the BOLD

signal within parcels and the delineation between regions of functional specialization (Chong et

al., 2017).

We extracted MEFC data from each vertex and applied the above parcellation across the

entire cohort of 301 participants at resolutions of 200 and 400 parcels. For each resolution,

MEFC data were initialized to a group parcellation atlas developed by Schaefer et al. (2018). We

use this cortical parcellation scheme both as the initialization reference for our individualized

cortical parcellation maps, as well as for our edge-level connectomic analyses described below.

We selected the Schaefer atlas for three reasons: (i) It is functionally-derived, and thus more

closely aligned with the current study aims, (ii) it has high spatial resolution for different levels

of granularity (we report findings from both 400 and 200 node parcellations here), and (iii) it is

among the most commonly reported cortical parcellation atlases in the literature, providing
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intrinsic partitioning of nodes within Yeo 7- and 17- network solutions (used in our edge-level

connectomics analyses; Yeo et al., 2011).

Following initialization with the Schaefer parcellations, the two-step iterative process

was repeated 20 times to produce a final parcellation representing the optimal partition with

respect to the entire cortical surface. We calculated homogeneity by taking the average

correlation coefficient of all pairs of vertices in a given parcel and then averaging across all

parcels. This was repeated at each repetition to observe the incremental change in homogeneity

as the iterative parcellation proceeded. Homogeneity was calculated first at the participant level

and then averaged across the entire cohort for a group estimate. For a subset of participants,

some parcels from the final partition merged into the medial wall (where no data existed) or into

parcels belonging to the contralateral hemisphere. Because partitions likely reflect

participant-specific neurobiological variations in functional organization, parcels assigned to the

contralateral hemisphere were allowed to retain their original group atlas labels. With the

400-parcel resolution, parcels merging with the medial wall occurred in 69 older adults and 35

younger adults, averaging 2-3 parcels in these participants; parcels migrating to the contralateral

hemisphere occurred in 62 older adults and 24 younger adults, averaging 2-3 parcels. With the

200-parcel resolution, parcels merging with the medial wall occurred in 18 older adults and 10

younger adults, averaging 1 parcel in these participants. No parcels migrated to the contralateral

hemisphere at this resolution.

Functional Connectivity Matrix. A connectivity matrix was constructed for each participant

according to their individualized parcel solution. Since the MEFC data consist of ICA coefficient

sets (coefficient weights for each accepted component x vertex) concatenated by run, we

extracted and averaged the MEFC data from vertices within each parcel to obtain a parcel-level
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coefficient set. Connectivity was estimated by computing the product-moment correlation

between each parcel’s coefficient set, resulting in a nparcels × nparcels functional connectivity matrix

(Ge, Holmes, Buckner, Smoller, & Sabuncu, 2017). In this approach, RSFC was calculated as the

correlation of the ICA coefficients across parcels, rather than a correlation across BOLD signal

time-series, as is typically done (see Kundu et al., 2013). The canonical Fisher’s r-to-z

transformation was then applied to normalize the distribution of correlation values and account

for variation in MEFC data degrees of freedom, or the number of denoised ICA coefficients (i.e.

number of BOLD components), across individuals (Kundu et al., 2013):

Z = arctanh(R)･ 𝑑𝑓 − 3

where R is the product-moment correlation value and df is the number of denoised ICA

coefficients. Computing functional connectivity with approximately independent component

coefficients rendered global signal regression unnecessary (Spreng et al., 2019). Critically,

ME-ICA effectively removes distance-dependent RSFC motion confounds from fMRI data

(Power et al., 2018). As shown in Supplemental Figure 2 (see also Supplemental Material),

framewise displacement had a comparable impact on younger and older adult RSFC, ruling out

motion as a potential confound in the results reported below.
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Analysis

BOLD Dimensionality

A unique advantage of ME-fMRI and the ME-ICA processing framework is that BOLD-

and non-BOLD-like signals are separated into independent components. A novel metric of

“BOLD dimensionality,” the number of BOLD components identified by ME-ICA, may then be

examined as a data-driven representation of the global network architecture of the brain, and

used to investigate changes with age (e.g. Kundu et al., 2018). We assessed the test-retest

reliability of BOLD dimensionality across two runs of data. Total BOLD dimensionality was

then compared between age-groups with an independent samples t-test and an ANCOVA

controlling for sex, education, site and estimated whole brain volume (eWBV; sum of grey and

white matter divided by total intracranial volume, derived from FreeSurfer). To observe the

trajectory of BOLD dimensionality with increasing age across the lifespan, BOLD

dimensionality data from an independent developmental sample (N = 51, 10 female; Mage=21.9

years; age range, 8.3 – 46.2 years; see Kundu et al., 2018 for details) were pooled with the

current data. As our sample consisted of two discrete age cohorts, these additional data points

were used to properly fit a function between age and BOLD dimensionality. To render the

samples comparable and account for differences in acquisition across datasets, BOLD

dimensionality was scaled by the number of timepoints acquired. The relationship between age

and BOLD dimensionality was then fit to a power law function (see Supplemental Figure 3 for

unscaled version). Further characterization of BOLD signal dimensionality, including

associations with graph analytic measures of participation coefficient, modularity and

segregation, and BOLD signal dimensionality’s relationship to whole brain RSFC are reported in

Supplemental Material (Supplemental Table 1, Supplemental Figures 4 & 5)
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Gradients & Manifold Eccentricity

Cortical gradients allow for a low dimensional (i.e. macroscle) representation of

functional connectivity that demarcate transitions in whole brain functional connectivity

(Margulies et al., 2016; Huntenburg et al. 2018). Gradient map embedding has reliably

demarcated cortical transitions from unimodal to heteromodal cortex, visual to somatomotor

cortices, among others (Bethlehem et al. 2020; Margulies et al., 2016; Hong et al. 2020). Cortical

gradients were computed using functions from the BrainSpace toolbox

(https://github.com/MICA-MNI/BrainSpace; Vos de Wael et al., 2020), as implemented in

MATLAB. For each participant, the 400 x 400 GPIP functional connectivity matrix was

thresholded row-wise to the upper 10% of connections to retain only the strongest positive

connections (Hong et al., 2019; Margulies et al., 2016). Cosine similarity was computed on the

sparse matrix to input to the diffusion map embedding algorithm employed below, generating a

matrix that captures similarity in whole-brain connectivity patterns between vertices (Hong et al.,

2019; Margulies et al., 2016). 

We then applied diffusion map embedding, a non-linear dimensionality manifold learning

technique from the family of graph Laplacians (Coifman et al., 2005), to identify gradient

components at the individual participant level. Each gradient represents a low-dimensional

embedding/eigenvector estimated from a high-dimensional similarity matrix. In the embedding

space, vertices that feature greater similarity in their whole-brain functional connectivity patterns

appear closer together, whereas vertices that are dissimilar are farther apart. Each embedding

axis can thus be interpreted as an axis of variance based on connectivity pattern

similarity/dissimilarity. Euclidean distance in the embedded space is equivalent to the diffusion

distance between probability distributions centered at those points, each of which is equivalent to
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a difference in gradient score. The algorithm is controlled by a single parameter α, which

controls the influence of density of sampling points on the manifold (Margulies et al, 2016). We

used α = 0.5 in this study, which differentiates diffusion map embedding from Laplacian

eigenmaps, and allows the inclusion of both global and local relationships in the estimation of

the embedded space. An iterative Procrustes rotation was performed to align participant-specific

gradient components to a young-old group average template and enable group comparisons.

Group contrasts were conducted using surface-based linear models, as implemented in Surfstat

(Worsley et al., 2009; http://www. math.mcgill.ca/keith/surfstat/) controlling for sex, education,

site and eWBV.

We calculated a metric of manifold eccentricity to quantify the diffusivity of vertices in

gradient space. Following Bethlehem et al. (2020) and Park et al. (2021), we summed the

squared Euclidean distance of each vertex from the whole-brain median in a 2-dimensional

gradient space for each participant. The position of a vertex in gradient space represents a

coordinate for where the vertex falls on each gradient’s axis. The proximity of any two vertices

informs how similar their functional connectivity profiles are on each gradient. The more diffuse

vertices are within a network, the more variable and dedifferentiated the functional connectivity

profiles. Mean manifold eccentricity was then compared across age groups. Statistical

significance was determined with non-parametric spin-test permutation testing, which overcomes

biases in the test statistic due to the spatial autocorrelation inherent to BOLD data

(Alexander-Bloch et al., 2018). An ANCOVA on manifold eccentricity was also conducted

controlling for sex, education, site and eWBV.

Edge-Level Connectomics
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Inter-regional functional connectivity group differences were tested with PLS. PLS is a

multivariate method that determines the association between two sets of variables by identifying

linear combinations of variables in both sets that maximally covary together (McIntosh and

Lobaugh, 2004; McIntosh and Misic, 2013). Crucially, PLS enables whole-brain contrasts of

unthresholded connectivity matrices, allowing more precise mapping of edgewise age

differences. In our analyses, one set of variables was individual RSFC matrices, while the other

set represented group assignment or individual difference metrics (e.g., BOLD dimensionality;

see Supplemental Material). 

Functional connectivity was assessed at the whole-brain level using the Schaefer atlas

(Schaefer et al., 2018; Yeo et al., 2011; 400 x 400 matrix; 200 x 200 matrix as supplementary

analysis, Supplemental Figure 6). Motivated by prior work (e.g., Grady et al., 2016; Sullivan et

al., 2019; Spreng et al., 2016), we also examined RSFC among sub-networks of the default,

dorsal attention, and frontoparietal control networks. For the sub-network analysis, we first

reassigned each of the 400 parcels to the corresponding network of the Yeo 17-network solution

following the mapping based on Schaefer et al. (2018). Next, we created a matrix for the

pairwise connections between 8 sub-networks: dorsal attention (DAN-A, DAN-B), frontoparietal

control (CONT-A, CONT-B, CONT-C), and default (DN-A, DN-B, DN-C), resulting in a

192x192 parcel matrix. The full 17-network characterization of the 400x400 parcel results, along

with the 17-network and sub-network characterizations of the 200x200 matrix, can be found in

Supplemental Figures 7, 8, and 9. At each level, a data matrix X was created using all

participants’ parcellated functional connectivity matrices. The X matrix was organized such that

each row corresponded to an observation (each participant, nested in age groups), and the cells in

each column corresponded to the unique connections from each participant’s connectivity matrix
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(the lower triangle of the matrix). The column means within each group were calculated, and the

data in X were mean-centered. The mean-centered data were then submitted to singular value

decomposition (SVD) to provide mutually orthogonal latent variables. Each latent variable

represents a specific relationship (e.g. RSFC x Group) and consists of three elements: (1) a left

singular vector consisting of the weighted connectivity pattern that optimally expresses the

covariance, (2) a right singular vector, which represents the weights of the study design variables

and can be interpreted as data-driven contrast weights between groups, and (3) a scalar singular

value, which represents the covariance strength between the design variables (Group) and RSFC

accounted for by each latent variable. Brain connectivity scores were calculated by taking the dot

product of the left singular vector and each participant’s RSFC matrix. A brain connectivity

score, therefore, represents a single measure of the degree to which a participant expresses the

connectivity pattern captured by a given latent variable. 

All PLS latent variables were statistically evaluated using permutation testing. Rows of X

were randomly reordered and subjected to SVD iteratively, as described above. This was done

1,000 times to create a distribution of singular values under the null hypothesis of no existing

relationships between X and Y for the corresponding PLS analysis: that there is no group

difference in whole-brain (or sub-network) RSFC. A p-value was computed for each latent

variable as the proportion of permuted singular values greater than or equal to the original

singular value. Critically, permutation tests involve the entire multivariate pattern and are

performed in a single analytic step, so correction for multiple comparisons is not required

(McIntosh and Lobaugh, 2004). 

Bootstrap resampling was used to estimate the reliability of weights for each RSFC edge.

Participants were randomly resampled (rows in X) with replacement while respecting group
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membership. The matrix was subjected to SVD and the process was repeated 1,000 times,

generating a sampling distribution for the weights in the singular vectors. To identify individual

connections that made a statistically significant contribution to the overall connectivity pattern,

we calculated the ratio between each weight in the singular vector and its bootstrap-estimated

standard error. Bootstrap ratios are equivalent to z-scores if the bootstrap distribution is

approximately unit normal (Efron and Tibshirani, 1986). Bootstrap ratios were, therefore,

thresholded at values of ±1.96, corresponding to the 95% CI. 

Network-Level Contributions

PLS analyses identified inter-regional connectivity patterns that differed by group and/or

covaried with individual difference metrics. For each of these analyses, network-level effects

were also examined. To quantify the network-level contributions to the PLS-derived functional

connectivity pattern, two separate weighted adjacency matrices were constructed from positive

and negative RSFC weights. For both matrices, nodes represent parcels defined by the individual

parcellation, while edges correspond to the thresholded bootstrap ratio of each pairwise

connection. Network-level functional connectivity contributions were quantified by assigning

each parcel according to the network assignment reported by Yeo et al. (2011), and taking the

average of all connection weights in a given network, thereby generating a 7 x 7 matrix (17 x 17

matrix for the 17-network solution; and an 8 x 8 matrix when examining the default, dorsal

attention, and frontoparietal control sub-networks). The significance of mean within- and

between- network connectivity was computed by permutation testing. During each permutation,

network labels for each node were randomly reordered and the mean within- and between-

network connectivity were recalculated. This process was repeated 1000 times to generate an

empirical null sampling distribution that indicates no relationship between network assignment
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and connectivity pattern (Shafiei et al., 2019). The significance of the pairwise connections to the

network matrix was determined by estimating the proportion of times the value of the sampling

distribution was greater than or equal to the original value. 

Spring-Embedded Plots

Spring-embedded plots were rendered from group average matrices of RSFC data using

Pajek software (Mrvar and Batagelj, 2016). Sparse matrices containing the top 5% of positive

connections were entered into Pajek. The plotting of positive edge weights and similar thresholds

applied to prior investigations of healthy aging (Chan et al., 2014; Geerligs et al., 2015) permit

more direct comparison with prior results. A partition was assigned based on the Yeo 7- or

17-network solution (Yeo et al., 2011) to optimize community (i.e., network) structure for

visualization.
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Results

To interrogate the intrinsic functional architecture of the aging brain, we implemented a

multifaceted, multiscale data acquisition and analysis protocol in younger and older healthy

adults (see Figure 1 and Methods). To identify global patterns of network dedifferentiation with

age, we first assessed age differences in the dimensionality of the ME-fMRI BOLD signal as

output from ME-ICA. Next, we examined network-specific dedifferentiation patterns,

contrasting macroscale gradients and edge-level network connectomics between younger and

older adults. At each turn, we examined associations between network organization and

cognitive functioning for younger and older adults. Brain and behavior associations for each

analysis are reported in Supplemental Materials (Supplemental Tables 2, 3 and 4; Supplemental

Figures 10 and 12). All results are reported with covariates of site, sex, education, and eWBV

where appropriate.

BOLD Dimensionality

Two 10-minute runs of resting-state ME-fMRI were collected. BOLD dimensionality, the

number of independent BOLD components in ME-fMRI signal, was stable across runs (r(299) =

.79, p < .001 [.75, .83]; Figure 2A). Younger adults showed greater BOLD dimensionality than

older adults (t(299)=15.38, p < .001; Cohen’s d= 1.81; Figure 2B). This remained true when

covariates of site, sex, education, and eWBV were included (F(1,281)= 97.07, p < .001; ηp
2 =

.26). In the context of lifespan development, which included an additional sample aged 8-46

(Kundu et al., 2018), a power function provided a suitable fit between age and BOLD

dimensionality (R2=.547; Figure 2C). BOLD dimensionality associations with cognition are in

Supplemental Tables 2, 3 and 4 and Supplemental Figure 10A.

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2

Figure 2 Caption: BOLD signal dimensionality. (A) High test-retest reliability across two ME-fMRI runs. (B) Violin
plots show distributions of total BOLD signal dimensionality across runs in younger and older adults. (C) Scatter
plot showing BOLD signal dimensionality by age with a power distribution and 95% confidence intervals overlaid.
Points in white were contributed by Kundu and colleagues (2018). Adjusted BOLD signal dimensionality = Total
number of accepted BOLD components / number of time points acquired.

Gradient Analyses

We next characterized macroscale gradients of RSFC (e.g., Hong et al., 2019; Margulies

et al., 2016) in younger and older adults. In both groups, the principal gradient ran from sensory

and motor regions towards transmodal systems such as the default network (Figure 3A),

suggesting that macroscale functional organization of the cortex is generally preserved with age.

However, regional age differences in this topographic organization emerged (FWE p < .05;

cluster defining threshold p < .01; Figure 3A). Indeed, cortex-wide age group comparison on the

principal gradient revealed higher gradient values in the right superior parietal lobule and

somatosensory cortex, but lower values in occipital and ventral temporal regions for older adults.

A difference between visual and sensory/motor networks with respect to cortical gradient

organization was also evident when examining the second gradient. As in prior studies (e.g.
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Margulies et al., 2016), the second gradient differentiated visual from somatomotor cortices in

both groups (Figure 3B). However, cortex-wide between-group comparisons revealed subtle

differences in this topography. In particular, we observed increased gradient values in the

temporoparietal junction in older compared to younger adults, together with decreased values in

a segment of the superior parietal lobule/intraparietal sulcus. These results show that regions

along the second gradient axis also shift their connectivity profiles with advancing age, again

with shifts in sensory/visual regions.

Finally, we rendered principal-second gradient manifold scatterplots in a 2D gradient

embedding space in younger and older adults (Figure 3C). Older adults showed more diffuse,

and, thus, dedifferentiated vertices. We quantified this diffusivity by calculating manifold

eccentricity– the sum of Euclidean distance across all vertices from the median– for each

participant and compared across groups. Results revealed significantly greater manifold

eccentricity in older adults (t(299 ) = -10.74, pSPIN < 0.01, Cohen’s d = 1.26; F(1,281)= 47.18, p <

.001, ηp
2 = .14 with site, sex, education, and eWBV covariates included). See Supplemental

Tables 2, 3 and 4 and Supplemental Figure 10B for associations with behavior.

As BOLD dimensionality and manifold eccentricity both demonstrated significant age

group differences, we conducted post-hoc product-moment correlations to test whether these

global measures of brain organization were reliably associated. Negative correlations were

observed in both younger (r(179)= -.575, p < .001, [-.66, -.47]) and older adults (r(118)= -.255, p

< .005, [-.42, -.08]), such that higher BOLD dimensionality was related to less diffuse, more

compact vertices in the manifold. In computing a partial correlation controlling for age, the

relationship remained when performed on the full sample (pr(298)= -.391, p < .001, [-.48, -.29]).

Non-overlapping 95% confidence intervals indicated a significantly more negative correlation in
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younger adults. Results were similar when repeated with covariates (young: pr(161)= -.45, p <

.001, [-.53, -.36]; old: pr(113)= -.23, p < .05, [-.35, -.11]; full sample: pr(280)= -.34, p < .001,

[-.44, -.23]), although confidence intervals overlapped between groups. Supplemental Figure 11

illustrates the relationship in each age group.
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Figure 3

Figure 3 Caption: Gradients of cortical connectivity in younger and older adults. (A) The mean principal gradient for
younger (left) and older (center) adults, representing an axis of functional connectivity similarity variance that
ranged lowest to highest from unimodal to transmodal cortex. (B) The mean second gradient for younger (left) and
older (center) adults, representing an axis of functional connectivity similarity variance that ranged lowest to highest
from visual to somatomotor cortex. Older adults > younger adults contrasts revealing statistically significant clusters
at FWE p < 0.05, cluster defining threshold p < 0.01 (A & B right). (C) Vertex-wise scatterplots representing the
principal-second gradient values. This gradient manifold is depicted for younger (left) and older (right) adults.
Scatterplot colors indicate functional networks as per the 7-network solution by Yeo et al. (2011). VIS = visual,
SOM= somatomotor, DAN= dorsal attention, VAN = ventral attention, LIM = limbic, FPC= frontoparietal control,
DN= default.
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Edge-Level Connectomics

We next examined edge-level, interregional functional connectivity differences between

younger and older adults. Group mean connectivity matrices are in Figure 4A-B. Qualitative

differences in the top 5% of positive connections between groups can be observed with a

spring-embedded layout arranged by network membership (Figure 4C-D). The spring-embedded

plot suggests more integration of the dorsal attention and frontoparietal control networks in older

adults.

PLS (whole brain). Age-related differences in the 79800 interregional connections (i.e.,

the lower triangle of the 400x400 functional connectivity matrix) were quantitatively assessed

with PLS. A significant latent variable (permuted p < .001) revealed a pattern of age differences

in RSFC, with increases and decreases observed across the connectome (Figure 4E). Network

contribution analysis of within- and between- network edges revealed significant age effects.

Older adults demonstrated lower within-network connectivity across all seven networks, and

lower connectivity between limbic, frontoparietal control and default networks (Figure 4F).

Older adults showed greater between-network connectivity across systems for the visual and

somatomotor networks (Figure 4G). The overall pattern of age-related differences was similar

when examined with a 200 parcellation scheme (Supplementary Figure 6). Brain connectivity

scores’ association with cognition are reported in Supplemental Table 2, 3, and 4, and

Supplemental Figure 12.
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Figure 4

Figure 4 Caption: Functional connectomics in younger and older adults. Mean RSFC for the 400-parcellated data in
(A) younger and (B) older adults. Spring-embedded plots with a 7-network solution (5% edge density) of the mean
correlation matrices for (C) younger and (D) older adults. Nodes that are highly functionally correlated with one
another are grouped closer together. (E) Multivariate PLS analysis was used to identify age-related differences in
RSFC between younger and older adults. Red color indicates significantly greater RSFC in younger adults, and blue
color indicates significantly greater RSFC in older adults. (F-G) Network contributions represent the summary of
significant positive and negative edge weights within and between networks in younger (F) and older (G) adults.
The mean positive and negative bootstrap ratios within and between networks are expressed as a p-value for each
z-score relative to a permuted null model. Higher z-scores indicate greater connectivity than predicted by the null
distribution. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral attention, LIM = limbic,
FPC = frontoparietal control, DN = default.
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PLS (sub-network). In an a priori, targeted sub-network analysis we examined age-group

differences in functional connectivity among sub-networks of the default, dorsal attention,

frontoparietal control networks. The mean age-group sub-network matrices are shown in Figure

5A-B. The spring-embedded representation of the top 5% of positive connections in each group

(Figure 5C-D) suggests that older adults show more integration of the default network (DN-A)

and frontoparietal control network (CONT-C). 

Quantitative comparison with PLS of the inter-regional functional connectivity revealed a

distinct pattern of age differences (permuted p < .001; Figure 5E). Younger adults (Figure 5F)

showed more within-network connectivity. Between subnetwork connections were also seen in

the young for CONT-A and CONT-B, and between DN-A to DN-B and DN-C. Between network

connections in the young were also observed for CONT-B and DN-B. Older adults (Figure 5G)

showed greater between-network connectivity of the dorsal attention network with frontoparietal

control and default networks (DAN-A to CONT-B and CONT-C; DAN-B to CONT-B, CONT-C,

DN-A, and DN-B), as well as greater frontoparietal control connectivity with the default network

(CONT-A to DN-A; CONT-B to DN-C; CONT-C to DN-B). Older adults also showed greater

connectivity among frontoparietal control subnetworks (CONT-A to CONT-C; CONT-B to

CONT-C). A similar pattern of connectivity was observed with a 200 parcellation scheme

(Supplemental Figure 9). Sub-network brain connectivity scores’ associations with cognition are

reported in Supplemental Tables 2, 3, and 4, and Supplemental Figure 12.
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Figure 5

Figure 5 Caption: Functional connectivity of the default (DN), dorsal attention (DAN), and frontoparietal control
(CONT) sub-networks following the Yeo 17-network solution. Mean group connectivity in (A) younger and (B)
older adults. Spring-embedded plots (5% edge density) of the mean correlation matrices for (C) younger and (D)
older adults. Nodes that are highly functionally correlated with one another are grouped closer together.(E)
Differences in RSFC between younger and older adults among DAN, CONT, and DN. (F-G) Network contributions
represent the summary of positive and negative edge weights within and between networks in younger (F) and older
(G) adults. DAN = dorsal attention, FPC = frontoparietal control, DN = default.
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Connectomics Site Replication

To verify that our edge-level results are robust and replicable, and not confounded by

potential overfitting of the PLS model, the full and sub-network PLS analyses were conducted

only on the Ithaca sample. Brain connectivity scores were then computed from the Ithaca

sample-derived weights and the Toronto sample individual-subject RSFC matrices, and

compared between groups. Age group differences were replicated in the held out Toronto sample

(t(61)= 6.42, p < .001, Cohen’s d= 1.63; F(1,57)= 21.13, p < .001, ηp
2= .27 with sex, education,

and eWBV covariates included). In the sub-network analysis, age group differences were also

replicated in the held out Toronto sample (t(61)= 7.01, p < .001, Cohen’s d= 1.79; F(1,58)=

24.16, p < .001, ηp
2 =.29 with sex, education, and eWBV covariates included). These site

replication analyses (Supplemental Figure 13) demonstrate that the PLS results are robust to

potential issues of model overfitting and that the edge-level effects of functional brain aging

observed in the Ithaca sample were also observed at the Toronto site.

Cognition

Overall, predicted age-group differences in cognition were observed. Younger adults

performed better on indices of episodic memory (t(281)= 17.51 p < .001; Cohen’s d = 2.11),

executive function (t(281)= 12.67, p <.001; Cohen’s d = 1.52), and processing speed (t(281)=

15.03, p < .001; Cohen’s d = 1.81). Older adults had higher semantic memory index scores

(t(281)= 9.18, p < .001; Cohen’s d = 1.10; see Table 1). Effects remained when testing for age

group differences with ANCOVAs controlling for site, sex, education, and eWBV (Episodic:

F(1,277)= 194.07, p < .001, ηp
2 = .41; Semantic: F (1,277)= 37.55, p < .001, ηp

2 = .12; Executive

Function: F(1,277)= 132.70, p < .001, ηp
2 = .32; Processing speed: F(1,277)= 97.21, p < .001, ηp

2

= .26).

35

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Associations between cognition and BOLD signal dimensionality, manifold eccentricity,

and brain connectivity scores from the whole brain and sub-network analyses were examined

(See Supplemental Tables 2, 3, and 4, and Supplemental Figures 10, 12 and 14). While several

significant brain-behavior associations were observed, all of these fell below statistical

significance thresholds after site was added as a covariate in the models.

Discussion

Brain aging is marked by dedifferentiation in patterns of brain activity and functional

connectivity. Here we adopted a comprehensive, multi-method approach to examine patterns of

intrinsic network dedifferentiation across multiple spatial scales. Specifically, we applied novel

methods to identify global, macroscale gradient, and edge-level differences in RSFC between

younger and older adults. BOLD dimensionality, the number of BOLD (i.e., non-noise)

components in the ME-fMRI signal, was lower for older adults, signaling a global shift towards

dedifferentiated brain networks in older age. In contrast, the organization of macroscale

connectivity gradients was largely preserved with age. However regional and global differences

in connectivity gradients did emerge. Edge-level, multivariate analyses with PLS also revealed

regional and network-specific patterns of dedifferentiation in older adulthood. Across the full

cortical connectome, visual and somatomotor regions were more functionally integrated with

other large-scale networks for older versus younger adults. In a targeted, sub-network analysis

including default, dorsal attention, frontoparietal control networks, older adults showed greater

default-executive coupling and reduced anticorrelation between default and dorsal attention

networks. By examining age differences in the functional connectome across multiple spatial

scales, we revealed that the intrinsic network architecture of the aging brain is marked by both
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global as well as topographically-discrete, network-specific patterns of functional

dedifferentiation. The findings provide evidence for both global and network-specific patterns of

dedifferentiation, laying the foundation for future studies examining alterations in RSFC as

putative sensitive and specific markers of neurocognitive aging.

BOLD signal dimensionality and global network dedifferentiation

Dimensionality in the BOLD signal was significantly lower for older versus younger

adults, reflecting a generalized pattern of network dedifferentiation continuing into later life.

This finding builds upon an earlier report of cross-sectional dimensionality reductions from

adolescence to early and middle adulthood (Kundu et al., 2018; Figure 2). Reductions in

dimensionality in early adult development, largely attributable to functional integration among

prefrontal and other transmodal cortices, reflects the transition from local connectivity to

longer-range connections and the formation of spatially distributed yet intrinsically coherent

brain networks (Kundu et al., 2018). The shift in functional brain organization parallels cognitive

development over this period, which is marked by the emergence of more integrative and

complex cognitive functions (Zelazo and Carlson, 2012), and is also evident within the structural

connectome (Park et al., 2020).

Declines in the dimensionality of the BOLD signal, which begin in adolescence, continue

unabated throughout adulthood and into later life. In younger adults, lower dimensionality

reflects greater functional integration and the emergence of large-scale brain networks (Kundu et

al., 2018). However, our observation of continued reductions in BOLD signal dimensionality

into older adulthood suggests that network integration may reach an inflection point in middle

age (Zonneveld et al., 2019). After this point, continued reductions in dimensionality may no

longer be driven by network integration, but rather by global network disintegration, and
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associated loss of coherent network components in the BOLD signal. Critically, our findings

using this novel metric of BOLD signal dimensionality are consistent with earlier reports of

age-related decreases in network modularity (Geerligs et al., 2015) and network segregation

(Chan et al., 2014). Indeed these measures are reliably and positively correlated with

dimensionality in our sample (see Supplemental Table S1). However, unlike these two graph

analytic measures of network organization, BOLD signal dimensionality is agnostic with respect

to the selection of cortical parcellation schemes, network definitions or specific network metrics.

As such, we suggest that dimensionality may serve as a useful, data-driven marker of functional

brain health in later life. An important next step in this regard will be to improve our mechanistic

understanding of dimensionality reductions with age. Such global shifts may result from

systemic structural, neurophysiological, metabolic or cerebrovascular changes known to occur

with advancing age (e.g., Tsvetanov et al., 2020).

Finally, as a novel metric applied to a healthy aging sample, we acknowledge that there

are important future directions to more fully interrogate the validity and applicability of BOLD

signal dimensionality as an informative marker of functional brain aging. Additional work is

necessary to conduct a validation of this metric, following the roadmap outlined by the original

validation studies in younger and middle-aged adults (Kundu et al., 2013, 2017, 2018). As a

physical property of T2* signal decay, the TE-dependence of BOLD signal (the fundamental

component of ME-ICA BOLD signal denoising) should be largely robust to age differences.

Directly testing this assumption will be an important direction for future research. Taken

together, the TE-dependence of the BOLD signal as well as the validation studies conducted in

healthy younger samples, give us confidence in BOLD signal dimensionality as a reliable,

informative marker of brain aging.
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Gradients and macroscale connectomics

Reductions in BOLD signal dimensionality into older age suggest a global shift towards a

dedifferentiated network architecture. We investigated whether this global shift may comprise

more precise topographical patterns, reflected as greater similarity in connectivity profiles among

brain regions. We tested this hypothesis by examining macroscale connectivity gradients in

younger and older adults. While this is the first report of gradient analyses using ME-fMRI and

individualized parcellation methods, our findings largely recapitulate connectivity gradients

observed in young adults (Margulies et al., 2016). Transitions in functional connectivity patterns

were observed from sensory/motor to transmodal association cortices (principal gradient) and

from visual to somatomotor cortices (second gradient). This gradient architecture was similar for

young and old, suggesting the macroscale organization of the gradients is generally preserved

with age, as has been observed previously (Bethlehem et al., 2020). However, specific

age-related regional differences did emerge in both gradient maps.

Age-related differences across both gradients included regions within visual,

somatomotor and attentional networks. Differences within these clusters suggest a reduction in

differentiation with respect to their corresponding gradient anchor (unimodal or transmodal in

the case of the principal gradient, somatomotor or visual in the case of the second gradient).

Specifically, both the superior parietal lobule, a node of the dorsal attention network implicated

in externally-directed attention and visuomotor control processes, and somatomotor regions,

showed greater similarity in connectivity profiles to transmodal regions. This is consistent with

earlier reports, and patterns observed in the present edge-level analysis, of reduced

anticorrelation between the dorsal attention and default networks in later life (Spreng et al.,

2016).
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Along the principal gradient, visual regions were more prominently anchored along the

unimodal axis in older adults. This finding is consistent with the spring embedding plots of

RSFC (Figure 4C-D), with more isolated visual regions among the top five percent of RSFC.

This suggests that the principal gradient in older adults is likely more driven by the

differentiation of heteromodal from visual systems, while in the younger adults there is a more

marked differentiation of heteromodal from somatosensory/motor systems along this axis. This

finding stands in contrast to the edge-level results (discussed below) which show greater

age-related integration of visual and somatomotor cortices with heteromodal association regions.

Importantly, gradients do not index functional connectivity strengths per se, but rather low

dimensional patterns of RSFC between specific regions and the rest of cortex. Thus, the shift in

connectivity profiles towards visual regions does not address functional integration of these

regions, but their weight along the gradient axis. We suggest that thresholding the connectivity

matrices before gradient mapping may have contributed to the age-related shift of visual cortices

towards the unimodal anchor of the first gradient. While speculative, we suspect that matrix

thresholding may have driven the suprathreshold connections towards an over representation of

stronger local versus weaker long-range functional connections. This would be consistent with

relative age-related reductions in volume and integrity of long-association fiber pathways versus

local connections in primary sensory regions (Kochunov et al., 2012; Raz et al., 2005). These

age-related structural differences would, in turn, render functional connectivity profiles towards

more localized patterns, yielding an age-related shift in the gradient map towards the unimodal

anchor. Nevertheless, these findings highlight the importance and potential impact of

thresholding decisions, a point we return to in our discussion of edge-level connectivity below.
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The gradient manifold, a scatter plot of the first two connectivity embedding gradients,

represents organization across the functional hierarchies (Figure 3C). Manifold eccentricity

depicts the Euclidean distance of regions from the center of the manifold, and displays the

veridicality of the first against the second gradient. In older adults we observed greater diffusion

of the vertices in the manifold with higher levels of eccentricity. Not limited to visual or

somatosensory regions, the entire manifold is more diffusely organized, suggesting global

dedifferentiation. This observation is consistent with previously observed increases in manifold

dispersion across the lifespan (Bethlehem et al., 2020). This metric of manifold eccentricity was

negatively correlated with the global measure of BOLD dimensionality, within and across

groups. Lower BOLD dimensionality, as observed in older adults, was related to higher manifold

eccentricity, providing cross-method convergence for global dedifferentiation.

It is important to note that we applied diffusion map embedding, a non-linear

dimensionality manifold learning technique from the family of graph Laplacians (Coifman et al.,

2005). This approach is among the most widely implemented in the literature (e.g. Bethlehem et

al., 2020; Hong et al., 2019; Margulies et al., 2016; Murphy et al., 2019; Vos de Wael et al.,

2020). However, given the novelty of gradient mapping in older adult populations, a direction

for future research will be to critically evaluate the full range of approaches as well as algorithm

parameters (Hong et al., 2020), including incorporation of repulsion properties (Böhm et al.,

2021) in the gradient analysis to yield greater clarity regarding the segregation of discrete

networks and differences  with age.

Edge-level connectomics

To more precisely investigate edge-level connectivity patterns, we adopted a multivariate

analytical approach. As PLS uses singular value decomposition to test age differences across all
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edges in a single analytical step, we report RSFC differences across the full functional

connectome, eliminating the need to apply functional connectivity strength or density thresholds.

Visual inspection of the full connectomes for younger and older adults (Figure 4, Panels A-D)

revealed a global pattern of network dedifferentiation for older adults, consistent with our

dimensionality findings and previous reports (Betzel et al., 2014; Chan et al., 2014; Geerligs et

al., 2015; Malagurski et al., 2020; Stumme et al., 2020). These qualitative differences were

statistically validated in the group analysis (Figure 4, Panel E) and aggregate network matrices

(Figure 4, Panels F-G). As predicted, younger adults showed a robust pattern of within-network

connectivity, as well as connectivity between transmodal networks (Bullmore and Sporns, 2009;

Gratton et al., 2012).

Despite preserved macroscale gradients, edge-level analyses revealed striking age

differences in network-specific connectivity patterns. First, within-network connectivity was

lower for older adults across the seven canonical networks investigated here. Reduced

within-network functional connectivity is a hallmark of normative aging (Damoiseaux, 2017 for

a review). We speculate that degraded within-network coherence is likely a key determinant of

reduced BOLD signal dimensionality, and global network dedifferentiation, in older adulthood.

In addition to lower within-network coherence, edge-level analyses also revealed three distinct,

network-specific dedifferentiation patterns. The most striking of these revealed greater

integration of visual and somatomotor regions with all other networks for older adults (Figure 4,

Panel G). Functional integration of visual and somatosensory regions has been observed

previously. Chan and colleagues (2014) reported reduced segregation of visual cortices from

other brain networks, although this was not explicitly quantified in their analyses. Similarly,

age-related increases in node participation, a graph analytic marker of functional integration,
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were limited to visual and somatosensory networks in a large study of age differences in RSFC

(Geerligs et al., 2015). Further, Stumme and colleagues (2020) reported that age differences in

RSFC were most prominent in visual and somatosensory cortices. While previous studies

reported patterns of sensorimotor integration with age, these have not gained prominence as a

central feature of functional brain aging. As discussed above with regards to the gradient analysis

results, statistical thresholding of the gradient matrices might significantly impact these findings.

Threshold-based approaches highlight age-related differences among the most robust

connections, often associated with heteromodal cortices, potentially obscuring less robust age

differences in other networks. This is particularly evident in our findings, where somatomotor

and visual networks show small age differences relative to those observed for association

networks in the thresholded, spring-embedded plots (Figure 4, panels C-D). In contrast, analysis

of the unthresholded matrices revealed integration of sensorimotor networks to be among the

most striking features of the aging connectome (Figure 4, panels E-G).

Our findings of greater visual network integration parallel task-based studies identifying

greater top-down modulation of visual association cortices by transmodal regions as a central

feature of functional brain aging. Greater activation of transmodal cortices, in the context of

age-related declines in the fidelity of sensory signaling, has been interpreted as increased demand

for top-down modulation of early sensory processing (Clapp et al., 2011; Li and Rieckmann,

2014; Payer et al., 2006; Spreng and Turner, 2019b). Indeed, sensory declines and motor slowing

account for much of the individual variability in cognitive functioning among older adults

(Baltes and Lindenberger, 1997; Salthouse, 1996). This suggests that greater modulation of these

primary sensorimotor regions (and visual attention and visuomotor control regions of the

superior parietal lobule, see ‘Gradient analyses’ above) may be necessary to sustain complex
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thought and action in later life. While beyond the scope of the current study, we speculate that

such task-driven demands for greater cross-talk between transmodal and sensorimotor cortices

may, in turn, shape the intrinsic functional architecture of these networks in older adulthood

(Stevens and Spreng, 2014).

We also conducted a targeted analysis of edge-level age differences in the default, dorsal

attention, and frontoparietal control networks. Previous work has demonstrated that these

networks interact during goal-directed cognitive tasks (Spreng et al., 2010; Dixon et al., 2018;

Murphy et al., 2020), show similar connectivity profiles during both task and rest (Spreng et al.,

2013) and undergo significant changes into older adulthood (Grady et al., 2016; Sullivan et al.,

2019; Ng, et al., 2016). For this a priori analysis, we adopted the sub-network topography for the

three networks derived from the 17-network solution (Yeo et al., 2011). This enabled us to

investigate age-related changes with greater precision. Importantly, as we observed for the full

connectome analysis, the thresholded spring-embedded plots (Figure 5, panels C-D) failed to

reveal the robust age-differences in connectivity among default, dorsal attention and

frontoparietal control network regions that emerged from the edge-level analyses (Figure 5,

panels E-G). While the predicted pattern of reduced within-network connectivity was

recapitulated across the sub-networks, we observed two additional network-specific

dedifferentiation patterns. As predicted, there was greater age-related coupling of default and

frontal brain regions, a pattern we have described as the Default to Executive Coupling

Hypothesis of Aging (DECHA; Turner and Spreng, 2015; Spreng and Turner, 2019a). This

pattern did not emerge in the seven network analysis (Figure 4). However, when applied to the

edge-level sub-network matrices (Figure 5, panels E-G), a clear DECHA pattern emerged for

CONT-A to DN-A, CONT-B to DN-C, and CONT-C to DN-B sub-networks (Figure 5, panel G).
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While we did not identify reliable associations with cognition here, we have posited that this

dedifferentiation pattern may reflect the shifting architecture of cognition in later life (Turner and

Spreng, 2015; Spreng et al., 2018) with both adaptive and maladaptive consequences for

cognitive aging (Spreng and Turner, 2019a).

A second dedifferentiation pattern emerged in this sub-network analysis. Older adults

showed greater connectivity between the dorsal attention and the two other association networks.

This pattern was particularly pronounced for the DAN-B sub-network which includes the

superior parietal lobule. Previous reports have shown reduced anticorrelation between dorsal

attention and default networks (Keller et al., 2015; Spreng et al., 2016) in older adulthood. These

edge-level findings also converge with our gradient analyses where the superior parietal lobule, a

node of DAN-B, showed an age difference in connectivity gradient, with a functional

connectivity profile more similar to that of other transmodal regions. The DAN-B sub-network

encompasses regions of the putative frontal eye fields and precentral gyrus implicated in

top-down, or goal-directed, attentional control. This is again consistent with a neuromodulatory

account of neurocognitive aging, wherein greater allocation of attentional resources may be

engaged to sharpen perceptual representations in later life (Li et al., 2006; Li and Rieckmann,

2014). Future research will be necessary to directly test these hypotheses, linking

network-specific patterns of dedifferentiation to domain specific cognitive changes.

Cognitive Function

Our findings suggest that both global and network-specific dedifferentiation are core

features of the functional aging connectome. In a final series of analyses we investigated whether

these network changes were associated with cognitive functioning. We observed significant

behavioral correlations with BOLD signal dimensionality and edge-level connectivity.
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Intriguingly however, all observed associations fell below statistical significance thresholds

when site was included as a covariate in the statistical models. This was the case even though

both brain and behavioral age effects replicated across both sites (see Supplemental Figure 13

and Supplemental Table 5). As a result we do not interpret the brain and behavior associations

further here and report all uncorrected and partial correlations in Supplemental Tables 2, 3 and 4

(see site-specific scatter plots Supplemental Figure 14). While we took extraordinary care to

match data collection protocols and core demographics, study site encompasses many additional

moderating factors that may have influenced brain and behavioral associations across the two

sites (e.g., socioeconomic status, see Chan et al., 2018). While increases in statistical power

enabled by multi-site investigations permit greater sensitivity to detect brain-behavior

associations, it also comes at the potential cost of structured noise related to population

differences. Understanding these differences will also be an important direction for future

research.

Conclusion

We employed a multi-method data acquisition and analysis protocol to study functional

brain aging across multiple spatial scales, with a specific emphasis on age-related patterns of

intrinsic network dedifferentiation. Reduced BOLD signal dimensionality suggested a global,

age-related shift towards dedifferentiated network organization in older versus younger adults.

Limitations of a cross-sectional study design restrict interpretations with respect to lifespan shifts

in brain function. However, we speculate that network integration across the adult lifespan may

include an inflection point in middle adulthood, beyond which network integration in early

adulthood shifts to a pattern of network dedifferentiation, and the dissolution of a segmented and

modular network architecture.
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The methodological and analytical approach adopted here were selected to, at least in

part, overcome several of the most enduring and pervasive challenges in lifespan network

neuroscience. These include age-related variability in noise profiles within the BOLD signal, as

well as distortions introduced by group-wise spatial alignment to standardized templates. Of

course the methods implemented here cannot address the totality of confounds that complicate

RSFC analyses. Among the most critical of these, and an important direction for future research,

is resolving, or at least accurately modeling, age differences in neurovascular coupling. Altered

neurovascular coupling with age can introduce spurious RSFC differences that are difficult to

detect with standard imaging protocols (Tsvetanov et al., 2020). While ME-ICA methods, which

separate neural from non-neural sources in the BOLD signal, are a significant advance,

implementation of multimodal methods such as simultaneous arterial spin labeling and

echo-planar imaging may be necessary to resolve this issue (Tsvetanov et al., 2020).

Additionally, residual motion-related noise was still observed in the BOLD signal, which could

be attributable to respiration (e.g. Power et al., 2018; Lynch et al., 2020). While this noise did not

confound our age effects, its persistence requires additional consideration and points to the need

for further advances to improve signal-to-noise with ME-fMRI data. Despite these limitations,

we suggest that the multifaceted approach adopted here offers a comprehensive account of age

differences in the functional network architecture of the brain, including both novel and

previously observed patterns of network dedifferentiation and integration. Taken together, these

findings add further clarity and precision to current understanding of how functional networks

are formed, shaped, and shifted into older adulthood.
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Supplemental Material

Supplemental Figure 1

Supplemental Figure 1 Caption: Temporal Signal to Noise. A temporal signal to noise ratio (tSNR) map was created
for both runs of each participant’s denoised data and averaged. The average group map (N=301) was projected onto
an inflated surface, separated by left and right hemispheres. Maps were thresholded to demonstrate that the low end
of tSNR values were well above 50. A maximum tSNR of 400 is shown here for visualization purposes.
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Impact of Motion on RSFC

ME-ICA has been shown to effectively remove distant dependent motion effects in RSFC data
(Power et al., 2018). To rule out the possibility that these residual motion effects confounded our
main results, we conducted a behavior PLS analysis with raw framewise displacement (FD). This
analysis yielded a significant pattern (59.21% covariance explained, permuted p = .004;
Supplementary Figure 2A) representing the main effect of correlating functional connectivity
with FD across younger and older adults (younger adults r = .70; older adults r = .65;
Supplementary Figure 2B). While a motion-related connectivity pattern emerged (explaining
59.2% of the cross-block covariance), no significant group differences or age group interactions
emerged. Network contribution plots expressing the mean positive and negative weights within
and between networks are depicted in Supplementary Figure 2C. Higher FD was associated with
greater within-VIS connectivity and LIM, FPC, and DN connectivity (warmer colors), as well as
lower within-network connectivity of SOM, DAN, VAN, LIM, and DN (cooler colors).

As described in Methods, covariance in PLS can be specified as percent cross-block covariance,
where the cross-block covariance is between the brain data and predictor variables. The sum of
the percent cross-block covariance must sum to 100% over all latent variables (LVs). As such,
the value of covariance explained for a given LV cannot be interpreted in isolation but must be
weighed against the other LVs. This is demonstrated in the case of a single predictor variable,
where the resultant LV will explain 100% of the cross-block covariance.

These findings suggest that ME-ICA patterns of RSFC are still impacted by motion. BOLD
signal post-MEICA has been related to residual respiratory effects (Power et al., 2018), but to our
knowledge there is no evidence to suggest that this residual noise would confound group
comparisons. Rather, residual motion may reduce signal-to-noise in a similar manner across
groups. Indeed, we find that motion effects are not confounded by group membership in our
sample. A second LV accounting for 40.79% (p = .38) of the covariance dissociated age groups
in their relationship to motion. Relative to the first LV, group specific motion effects on
connectivity account for less covariance in the data. This LV, however, was not significant . If this
LV was significant, then there would be evidence that motion differentially impacted connectivity
by group, limiting the interpretation of the data. Because this interaction was not significant, our
primary results, all of which compare groups, are not confounded by motion.

We empirically confirmed that the pattern of connectivity covarying with motion is not consistent
with the age differences in RSFC reported in the main text. We determined this by assessing the
correspondence between brain connectivity scores from the whole-brain age contrast (Figure 4)
and from the motion-associated effects (Supplementary Figure 2A-C). Relationships are plotted
in Supplementary Figure 2D-F. Partial correlations controlling for sex, education, eWBV, and site
were as follows: Across the full sample, pr = -.037, p = .534; in younger adults: pr = -.049, p =
.528; in older adults pr = .019, p = .833.
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Supplemental Figure 2

Supplemental Figure 2 Caption: Behavioral PLS examining the relationship between functional connectivity with
motion in younger and older adults. Framewise displacement (FD) was calculated on the middle echo prior to
processing. (A) Functional connections that correlate with higher FD (warmer colors) and lower FD (cooler colors).
(B) Correlations of FD with the functional connectivity pattern in younger and older adults. Error bars indicate the
95% confidence interval derived from the bootstrap estimation. (C) Network contributions of the mean positive and
negative edge weights within and between networks. Scatterplots depicting age differences in brain connectivity
scores on the x-axis and motion-related brain connectivity scores on the y-axis (D) across the full sample, (E) in
younger adults, (F) in older adults. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral
attention, LIM = limbic, FPC = frontoparietal control, DN = default networks.
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Supplemental Figure 3

Supplemental Figure 3 Caption: BOLD signal dimensionality. The scatter plot shows BOLD signal dimensionality
by age with a power distribution and 95% confidence intervals overlaid. Points in white were contributed by Kundu
and colleagues (2018). Here, BOLD dimensionality is not adjusted by the number of time points acquired. BOLD
dimensionality was averaged across two runs for points in black.
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Characterizing BOLD Dimensionality

The present report leverages ME fMRI acquisition and processing to define a novel metric of
BOLD dimensionality as a proxy for global functional integration. We further investigate the
biological substrate of BOLD dimensionality by examining its most defining interregional
connections and comparing it to similar summary statistics of global RSFC organization.

We first used behavior PLS to characterize the interregional connections associated with BOLD
dimensionality. In brief, behavior PLS identifies functional connectivity patterns that optimally
co-vary with a behavioral measure. Two significant patterns captured the association between
functional connectivity and BOLD dimensionality in younger and older adults. The first pattern
reflects a main effect of BOLD dimensionality across groups (69.69% covariance explained,
permuted p < .001; younger adults r = .86; older adults r = .88; Supplementary Figure 4A).
Network contribution plots summarize the significant interregional associations. Higher BOLD
dimensionality was related to more within-network connectivity (Supplementary Figure 4A,
warmer colors). Higher BOLD dimensionality was also related to connectivity among
heteromodal association networks LIM, FPC, and DN . Dimensionality was negatively related to
VIS connectivity across the connectome (Supplementary Figure 4A, cooler colors).

The second pattern revealed an age group difference in the association between functional
connectivity and BOLD dimensionality (30.31% covariance explained, permuted p < .001;
younger adults r = .62; older adults r = -.48). In younger adults, higher BOLD dimensionality
was related to more connectivity within and between FPC and DN (Supplementary Figure 4B,
warm colors). In contrast, higher BOLD dimensionality in older adults was related to more SOM
connectivity with itself and with VIS, DAN, VAN, and LIM (Supplementary Figure 4B, cool
colors).
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Supplemental Figure 4

Supplemental Figure 4 Caption: Behavioral PLS of the relationship between functional connectivity and BOLD
dimensionality in younger and older adults. Two significant latent variables were identified. (A) The first latent
variable expresses an effect of the number of BOLD components on functional connectivity. From left to right:
functional connections that correlate with a higher (warmer colors) and lower (cooler colors) number of BOLD
components; Bar plots showing the correlations of BOLD dimensionality with the functional connectivity pattern in
younger and older adults; Network contributions of the mean positive (warm colors) and negative (cool colors) edge
weights within and between networks. (B) The second latent variable expresses age-related differences in the
association between functional connectivity and BOLD dimensionality. From left to right: Functional connections
that correlate with a higher number of BOLD components in younger (warm colors) and older adults (cool colors);
Bar plots showing the correlation between BOLD dimensionality and the functional connectivity pattern; Network
contributions of the mean positive (warm colors) and negative (cool colors) edge weights within and between
networks. Error bars for the brain-behavior barplots indicate 95% confidence intervals derived from the bootstrap
estimation. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral attention, LIM = limbic,
FPC = frontoparietal control, DN = default.

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


We then compared BOLD dimensionality to a series of graph theoretic measures to determine
whether it provides unique information about global integration. Participation coefficient, and
modularity were computed as implemented in the Brain Connectivity Toolbox (Rubinov &
Sporns, 2011). Segregation was also calculated (Chan et al., 2014). Measures were calculated on
each individual’s z-scored functional connectivity matrix. Self-connections and negative weights
were set to zero. Product-moment correlations were computed within each age group and on the
full sample controlling for age, as shown in Supplemental Table 1 and Supplementary Figure 5.
BOLD dimensionality was negatively associated with participation coefficient and positively
associated with modularity and segregation in younger adults. In older adults, BOLD
dimensionality was associated with segregation. In the full sample controlling for age, all graph
metrics showed a significant relationship to BOLD dimensionality. The observed negative
association between BOLD dimensionality and participation coefficient is consistent with a prior
report of a negative association in a lifespan sample from children to middle-aged adults (Kundu
et al., 2018). The positive association with modularity only in young adults reinforces that BOLD
dimensionality highlights an inflection point in network organization across the lifespan: More
dimensionality in young supports an established community structure; more dimensionality in
older adults may support segregation as community structure devolves.

Supplemental Table 1
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Supplemental Figure 5

Supplemental Figure 5 Caption: Scatterplots between BOLD dimensionality and graph theory measures.
Distributions of graph measures are shown at the top of each plot. BOLD dimensionality distributions are shown in
the rightmost plot. * indicates significant correlations. YA= younger adults; OA = older adults.
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Supplemental Figure 6

Supplemental Figure 6 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 7-network solution
(5% edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS
analysis was used to identify age-related differences in RSFC between younger and older adults (p < .001). Red
color indicates greater RSFC in younger adults, and blue color indicates greater RSFC in older adults. (F-G)
Network contributions represent the summary of positive and negative edge weights within and between networks in
younger (F) and older (G) adults. The mean positive and negative bootstrap ratios within and between networks are
expressed as a p value for each z-score relative to a permuted null model. Higher values indicate greater connectivity
than predicted by the null distribution. VIS = visual, SOM= somatomotor, DAN= dorsal attention, VAN = ventral
attention, LIM = limbic, FPC= frontoparietal control, DN= default.
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Supplemental Figure 7

Supplemental Figure 7 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
400-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution
(5% edge density) of the mean correlation matrices for (C) younger and (D) older adults. (E) Multivariate PLS
analysis was used to identify age-related differences in RSFC between younger and older adults. Red color indicates
greater RSFC in younger adults, and blue color indicates greater RSFC in older adults (p < .001). (F-G) Network
contributions represent the summary of positive and negative edge weights within and between networks in younger
(F) and older (G) adults. The mean positive and negative bootstrap ratios within and between networks are
expressed as a p value for each z-score relative to a permuted null model. Higher values indicate greater connectivity
than predicted by the null distribution. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral
attention, LIM = limbic, FPC = frontoparietal control, DN = default.
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Supplemental Figure 8

Supplemental Figure 8 Caption: Functional connectomics in younger and older adults. Mean RSFC for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots with a 17-network solution
(10% edge density) of the mean correlation matrices of (C) younger and (D) older adults. The threshold used for the
spring-embedded plots was set higher due to the sparsity of the graph at thresholds lower than 10%. (E) Multivariate
PLS analysis was used to identify age-related differences in RSFC between younger and older adults (p < .001). Red
color indicates greater RSFC in younger adults, and blue color indicates greater RSFC in older adults. (F-G)
Network contributions represent the summary of positive and negative edge weights within and between networks in
younger (F) and older (G) adults. The mean positive and negative bootstrap ratios within and between networks are
expressed as a p value for each z-score relative to a permuted null model. Higher values indicate greater connectivity
than predicted by the null distribution. VIS = visual, SOM = somatomotor, DAN = dorsal attention, VAN = ventral
attention, LIM = limbic, FPC = frontoparietal control, DN = default.

70

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Figure 9

Supplemental Figure 9 Caption: Functional connectivity of the default (DN), dorsal attention (DAN), and
frontoparietal control (CONT) sub-networks following Yeo 17-network solution. Mean group connectivity for the
200-parcellated MEFC data in (A) younger and (B) older adults. Spring-embedded plots (10% edge density) of the
mean correlation matrices for (C) younger and (D) older adults. A lower threshold was used for the
spring-embedded plots due to the sparsity of the graph at higher thresholds. (E) Differences in RSFC between
younger and older adults among DAN, CONT, and DN (p < .001). (F-G) Network contributions represent the
summary of positive and negative edge weights within and between networks in younger (F) and older (G) adults.
The mean positive and negative bootstrap ratios within and between networks are expressed as a p value for each
z-score relative to a permuted null model. Higher values indicate greater connectivity than predicted by the null
distribution. DAN = dorsal attention, FPC = frontoparietal control, DN = default.
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Supplemental Figure 10

Supplemental Figure 10 Caption: Scatterplots between cognitive scores and (A) BOLD dimensionality and (B)
manifold eccentricity. Cognition distributions are shown at the top of each plot. Distributions for BOLD
dimensionality and manifold eccentricity are shown in the rightmost plots. * indicates significant correlations. YA =
younger adults; OA = older adults.
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Supplemental Figure 11

Supplemental Figure 11 Caption: Scatterplot between BOLD dimensionality and manifold eccentricity. Distributions
are shown on the respective axes. * indicates a significant difference between correlations. YA = younger adults; OA
= older adults.
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Supplemental Figure 12

Supplemental Figure 12 Caption: Scatterplots between cognitive scores and brain connectivity scores for the (A) full
7-network and (B) 3 sub-network analyses. Cognition distributions are shown at the top of each plot. Brain
connectivity score distributions are shown in the rightmost plots. * indicates significant correlations. YA = younger
adults; OA = older adults.
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Supplemental Figure 13

Supplemental Figure 13 Caption: Replication of PLS results across sites. (A) Age differences in the full functional
connectome for Ithaca participants. (B) Group differences in brain scores computed for York participants, based
upon the edge-weights determined in the Ithaca sample. (C) Age differences in the functional connectivity of the
default (DN), dorsal attention (DAN), and frontoparietal control (CONT) sub-networks from Ithaca participants. (D)
Group differences in brain scores computed from Toronto participants, based upon the edge-weights from the
sub-networks determined in Ithaca participants. DAN = dorsal attention, FPC = frontoparietal control, DN = default.
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Supplemental Table 2
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Supplemental Table 3
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Supplemental Table 4
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Supplemental Figure 14

Supplemental Figure 14 Caption: Scatterplots between cognitive scores and (A) BOLD dimensionality, (B) manifold
eccentricity, (C) whole brain connectivity scores, and (D) sub-network brain connectivity scores by age group and
site. Cognition distributions are shown at the top of each plot. Distributions for BOLD dimensionality, manifold
eccentricity, and brain connectivity scores are shown in the rightmost plots. YA = younger adults; OA = older adults.
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Supplemental Table 5A

80

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 5, 2022. ; https://doi.org/10.1101/2021.03.31.437922doi: bioRxiv preprint 

https://doi.org/10.1101/2021.03.31.437922
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 5B
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