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Counterfactual theories propose that people’s capacity for causal judgment depends on their ability to
consider alternative possibilities: The lightning strike caused the forest fire because had it not struck, the
forest fire would not have ensued. To accommodate a variety of psychological effects on causal judgment,
a range of recent accounts have proposed that people probabilistically sample counterfactual alternatives
from which they compute a graded measure of causal strength. While such models successfully describe the
influence of the statistical normality (i.e., the base rate) of the candidate and alternate causes on causal
judgments, we show that they make further untested predictions about how normality influences people’s
confidence in their causal judgments. In a large (N = 3,020) sample of participants in a causal judgment
task, we found that normality indeed influences people’s confidence in their causal judgments and that
these influences were predicted by a counterfactual sampling model in which people are more confident in
a causal relationship when the effect of the cause is less variable among imagined counterfactual possibilities.

Public Significance Statement

People are thought to identify an event as a cause of an effect when altering it would make a difference to
the effect. Despite stable patterns in causal judgments across scenarios, however, people often disagree
about the causes of particular effects. Here, we asked how people determine their confidence in such
judgments, and we found evidence that people are more confident in their judgments when the difference
made by the cause to the effect is robust to changes in background factors.
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Judgments about cause and effect are central to the way people
decide who or what is responsible for an outcome (Chockler &
Halpern, 2004; Malle et al., 2014; Sytsma, 2021, 2022) and
explain how a particular state of affairs came to be (Lombrozo,
2007; Lombrozo & Vasilyeva, 2017). Psychologists have found that
causal judgments are affected by normality (i.e., the extent to which

an event conforms to statistical, social, or moral norms; Gerstenberg
& Icard, 2020; Henne, O’Neill, et al., 2021; Icard et al., 2017; Knobe
& Fraser, 2008), the presence of alternative causes (Kominsky et al.,
2015; Lagnado et al., 2013; O’Neill, Henne, et al., 2022), temporal
recency (Bramley et al., 2018; Henne, Kulesza, et al., 2021;
Spellman, 1997), action—omission differences (Henne et al., 2019),
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MODELING CONFIDENCE IN CAUSAL JUDGMENTS

and foreseeability (Kirfel & Lagnado, 2021). Taken together, these
findings suggest that while certain factors affect people’s judgments,
people generally agree about causal relationships in particular
scenarios. In the current article, we focus on the influence of normality
on causal judgments, where people tend to judge an event as more
causal when it violates a statistical or moral norm (Kominsky &
Phillips, 2020).

People, however, often disagree about the extent to which events
should be judged as causal, even when they are confident in
their judgments (Gerstenberg et al., 2021; O’Neill, Henne, et al.,
2022). For instance, economists and politicians often argue about
whether a recent rise in inflation is due to financial policies or rather
to supply chain issues, with each side confident in their judgment.
Such disagreements are especially critical to resolve because
decision making is not only informed by causal judgments
(Hagmayer & Sloman, 2009; Hitchcock & Knobe, 2009; Morris
et al., 2018) but also by confidence (Dotan et al., 2018; Folke et al.,
2016; Yeung & Summerfield, 2012). That is, without an immediate
way to determine which side is right and which side has misplaced
their confidence, it is unclear what to do to prevent future inflation.
So, the existence of such disagreements leads to a central, though
largely unstudied, question: How do people evaluate the accuracy
and reliability of their own causal judgments about single events?

Here, we propose a possible answer to this question: Confidence
in causal judgments indicates the robustness of the counterfactual
relationship between a candidate cause and an effect. That is, people
should be confident that an event caused an effect when it always
makes a difference to the effect, and they should be confident that
it did not cause the effect when it never makes a difference to
the effect. Conversely, people should be uncertain whether an event
caused an effect when it only makes a difference to the effect in
the presence of a number of background conditions. Our account
predicts that causal judgments and confidence should be nonlinearly
related because confidence should be high for causal judgments that
are very low (indicating the absence of a causal relation) or high
(indicating a strong causal relation) but low for causal judgments
that are in between (indicating a weak causal relation). By relying on
this predicted nonlinear relationship between confidence and causal
judgments, we also show that confidence can help arbitrate between
alternative mechanisms of causal judgment.

To answer these questions, we will first review counterfactual
sampling models of causal judgment. We will then draw on Bayesian
models of metacognition in perception and decision making (Fleming
& Daw, 2017; Ma & Jazayeri, 2014; Meyniel & Dehaene, 2017;
Meyniel et al., 2015; Pouget et al., 2016) to endow counterfactual
sampling models with a normative metric of confidence in causal
judgments. Following the predictions of our extension of counter-
factual sampling models, we then tested whether participants’
confidence ratings were sensitive to statistical normality and causal
structure. Along with replicating previously found effects on the
mean and variability of causal judgments, we found that confidence
ratings exhibited qualitatively similar effects and that these effects
were simultaneously predicted by one of the models we reviewed
(i.e., the Necessity—Sufficiency model; Icard et al., 2017). Finally,
we argue in the discussion that this constitutes strong evidence in
favor of counterfactual sampling models, and we discuss the
implications of this work for future research on causal judgments
and metacognition.
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Counterfactuals and Causal Judgment

Imagine that Joe is playing a simple game where he randomly
selects balls from two boxes. The left box contains 30% green and
70% red balls, and the right box contains 60% blue and 40% orange
balls. The rules of the game are simple: If Joe selects both a green
ball from the left box and a blue ball from the right box, he wins
adollar. Joe simultaneously chose a green and blue ball from the two
boxes, and so he won a dollar. To what degree did Joe win the dollar
because he picked a green ball (Morris et al., 2019)?

Here, we focus on counterfactual accounts of causal judgment
because they offer a precise answer to this question. Inspired by
metaphysical (Hume, 1748; Lewis, 1974) and statistical (Pearl, 2009)
theories of causation, counterfactual accounts of causal judgment
assume that people represent general causal dependencies between
types of events using a causal graph. Figure 1 depicts the causal graph
for the game above, which is known as an unshielded collider (Pearl,
2019). In this graph, an effect £ (winning a dollar) is produced by
two causes: a candidate cause C (picking a green ball from the left
box) and an alternate cause A (picking a blue ball from the right box).
Here, we will focus on two causal structures over this graph. In the
conjunctive structure, both C and A need to occur for the effect E to
occur (as in the example above). In the disjunctive structure, either
C or A alone (or both C and A) is sufficient for the effect E. Here we
call C the candidate cause because it is the event that we aim to judge.

Given a causal graph, counterfactual accounts assume that people
make causal judgments by evaluating whether the effect would have
been different under varying circumstances. In the example above,
Joe would not have won the dollar had he not picked a green ball.
So, picking a green ball made a difference to whether he won the
dollar, and one can say it caused him to win the dollar (Hart &
Honoré, 1985; Lewis, 1974). But many other combinations of events
could have happened in principle. If he did not pick a blue ball, for
example, Joe would not have won a dollar no matter whether he
picked a green ball or not. In this case, picking a green ball would not
have made a difference to whether he won the dollar because the
outcome would be the same either way. Owing to this feature of
counterfactual thinking, theorists have noted that counterfactual
accounts need a way to evaluate the difference made by the candidate
cause in a wide range of possible alternatives (Hitchcock, 2012;
Lombrozo, 2010; Quillien, 2020).

To account for the fact that the effect of the candidate cause can
depend on the values of other variables, recent accounts (which we
refer to as counterfactual sampling models; Figure 2A, gray boxes)
assume an iterative form of the same underlying logic known as
Monte Carlo sampling. First, people use the causal structure, the
prior probabilities of different events, and information about what

Figure 1
A Causal Graph Depicting the Relationships Between an E as
Produced by a C and an A

Note. E = effect; C = candidate cause; A = alternate cause.
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Figure 2
The Counterfactual Sampling Model of Causal Judgments (Gray) and Our
Extension of This Model to Confidence (Blue)
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Note. Boxes indicate relevant constructs and box arrows indicate assumed relationships
between constructs. Given information about the causal structure, the probabilities of different
events, and what actually happened, people imagine a distribution of counterfactual
possibilities and then determine the difference the C made to the E across each possibility.
People report causal judgments as the mean counterfactual effect, and they report their
confidence as the precision (inverse variance). Discrepancies between predicted and observed
judgments can be resolved by amending one of the above assumptions (revisions depicted as
red dashed arrows). When a model fails to predict causal judgments, theorists usually amend
the measure of difference making (a). When a model fails to predict confidence, theorists have
two main alternatives. First, they could argue that even if causal judgments are normative,
confidence is determined nonnormatively (b). Second, they could argue that confidence is
normative, but people generate counterfactual possibilities according to some alternative
sampling mechanism (c). E = effect; C = candidate cause; A = alternate cause. See the online
article for the color version of this figure.

actually happened to imagine many different counterfactuals in
proportion to their perceived likelihood (Kahneman & Miller,
1986). For each imagined possibility, they determine whether the
effect happens and whether intervening on the candidate cause
would have changed the effect, providing a distribution of causal
effects specific to that counterfactual. Finally, these counterfactual
effects are averaged to form a causal judgment (Gerstenberg et al.,
2021; Icard et al., 2017; Quillien, 2020). This process of generating
and averaging counterfactuals provides a Monte Carlo estimate of
the subjective probability that the candidate cause made a difference
to the effect (Icard, 2016). Counterfactual sampling models thus

have the desirable property that, given an appropriate way of
quantifying difference making, the very same mechanism can be
used to predict a wide variety of patterns in causal judgments
(Henne, 2023).

Recent work has focused on using discrepancies between
predicted and observed causal judgments to identify which kind
of difference making best explains causal judgments (depicted as
dashed arrow a in Figure 2A; Morris et al., 2019; O’Neill, Quillien,
& Henne, 2022; Quillien, 2020). However, there remains
disagreement on this matter because several different models
tend to make qualitatively similar predictions of causal judgments.
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So, rather than focusing on a particular formulation of counterfactual
sampling models, here we will provide a model of confidence
applicable to the entire class of recent models and some classic
models of causal judgment that can be reasonably construed under
this framework (Cheng, 1997; Cheng & Novick, 1990; Spellman,
1997). In the following section, we first review five successful
measures of difference making, which can be subsumed under
counterfactual sampling models (Table 1).

Measures of Difference Making

Here, we will outline five ways of quantifying difference making
proposed in psychology and philosophy that we selected based
on their ability to produce quantitative predictions of the effects
of normality on causal judgments: the AP (Cheng & Novick, 1990;
Jenkins & Ward, 1965), Power PC (the causal power theory of the
probabilistic contrast model; Cheng, 1997), Crediting Causality
(Spellman, 1997), Necessity—Sufficiency (Icard et al., 2017), and
Counterfactual Effect Size models (Quillien, 2020). Table 1 depicts
the formula for each model along with the derived model predictions
for the conjunctive and disjunctive causal structures. Notably, each
is expressed as a probability measure using an intervention on
acausal graph (i.e., the do operator; Pearl, 2009). Mathematically, the
intervention do(C = c) involves fixing C to a particular value ¢ and
removing the influence of any causes of C; here we use the shorthand
do(C) when fixing C to 1 and do(=C) when fixing C to 0.
Interventions are generally not equivalent to simple conditioning, for
example, P(E|C), because conditioning on C merely selects cases
where C has a certain value without removing the influence of other
variables on C. In the unshielded collider, however, C has no causes
(i.e., it has no incoming edges), so conditioning and interventions are
equivalent in this context. Nevertheless, we will use the intervention
notation as it is more general.

The simplest measure, known as AP, is the average difference in
the effect when the candidate cause is introduced, which is denoted
as P(E|do(C)), compared with when it is removed, which is denoted
as P(Eldo(—C)) (Cheng & Novick, 1990; Jenkins & Ward, 1965). In
our example, Joe wins a dollar if he gets both a green ball and a blue
ball. Given that he gets a green ball, the probability that he wins
a dollar is just the probability that he gets a blue ball. Without the
green ball, this probability is O (he needs both balls to win the dollar).
So, AP predicts that drawing a green ball makes a difference to Joe
winning the dollar when he draws a blue ball (i.e., AP = PA)).!

The Power PC model extends AP with the intuition that the
candidate cause can only be said to generate the effect in the subset of
cases in which the effect would not already be generated by some
other causes. Accordingly, it is equal to AP normalized with respect
to the probability that the effect does not occur when the candidate
cause is removed, that is, P(=Eldo(-~C)) (Cheng, 1997). In our
example, the Power PC model makes the same predictions as AP (i.e.,
that drawing a green ball makes a difference when Joe also draws a
blue ball) because Joe never wins the dollar without drawing a
blue ball.”

The Crediting Causality model (Spellman, 1997) is also similar to
the AP model, but it uses the unconditional probability of the effect
overall as a baseline. So, it can be interpreted as the increase in the
probability of the effect when the cause is present compared with the
probability of the effect in general, allowing it to account for some,
but not all, effects of temporal recency on causal judgments (Henne,
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Kulesza, et al., 2021). In our example, the overall probability
that Joe wins a dollar is the product of the probability that he draws
a green ball and the probability that he draws a blue ball. Subtracting
this product from the probability of winning a dollar given that Joe
draws a green ball, we see that the Crediting Causality model
predicts that drawing the green ball makes a difference when he
draws a blue ball, but not a green ball, that is, CC = P(A)(1 — P(C)).
Like AP and the Power PC model, the Crediting Causality model
was not derived with a commitment that these probabilities are
estimated through counterfactual sampling. However, because
counterfactual sampling is a plausible mechanism by which they
can be estimated, we include the Crediting Causality model here.
The Necessity—Sufficiency model computes the impact of the
candidate cause by taking a weighted average of the degree to which
it is necessary and sufficient for the effect (Icard et al., 2017).
Specifically, it predicts that when people imagine the cause to occur,
they compute sufficiency by checking whether the effect occurs.
When they imagine the cause as absent, they compute necessity by
checking whether the effect does not occur. In our example, drawing
a green ball is sufficient for Joe to win a dollar only when he also
draws a blue ball. Drawing a green ball is also completely necessary

! Note that the AP model was originally formulated to handle judgments
of general causation (e.g., judgments of the probability that a medicine
prevents a symptom within a population), whereas here we are interested in
causal judgments of singular events (e.g., judgments that a medicine
prevented a particular individual’s symptom). As a result, it was not derived
with counterfactual sampling in mind because participants typically were
presented with many individual cases over which to generalize and, therefore,
did not need to imagine alternative possibilities (Cheng & Novick, 1990;
Jenkins & Ward, 1965). But since it directly corresponds to the average
treatment effect (i.e., regression coefficient between the candidate cause
and the effect; Pearl, 2009) and since many other models are straightforward
modifications of it (e.g., Cheng, 1997; Quillien, 2020; Spellman, 1997),
AP provides a reasonable quantity people could be estimating when using
counterfactual sampling in making causal judgments.

2 The formula provided in Table 1 assumes that the causes of an effect
occur independently and independently influence the effect. Notably, the
assumption of independent influence is not met in our conjunctive example
above, which requires both the green ball and the blue ball to win a dollar.
Novick and Cheng (2004) introduced a variant of the Power PC model that
allows for conjunctive causes, but this model would predict that the green
ball alone is never a cause of Joe winning a dollar because only the
conjunction of the green ball and the blue ball is causal. Likewise, as with
AP, the Power PC model was originally derived as a measure of general
causal power, not to model the causal judgments of singular events in which
we are interested. It was later extended to handle judgments of single events
(Cheng & Novick, 2005; Stephan et al., 2020; Stephan & Waldmann, 2018),
though in our example these versions of the model predict that picking
a green ball is always maximally causal. Finally, several Bayesian extensions
of the Power PC model have been proposed which incorporate uncertainty
about the causal graph (Griffiths & Tenenbaum, 2005; Holyoak et al., 2010;
Lu et al, 2008; Stephan et al., 2020; Stephan & Waldmann, 2018;
Tenenbaum & Griffiths, 2001). As we will be focusing on cases in which the
causal graph is fully known to the participant, these extensions reduce to the
standard Power PC model. Thus, since these later versions of the model either
reduce to the original Power PC model or are unable to predict any of
the established normality effects in which we are interested, here we use the
original formulation of the Power PC model provided by Cheng (1997). Asin
Morris et al. (2019), our goal in including this model is not to claim that the
overall epistemic status of the model (as originally formulated) hinges on its
predictions of singular causal judgments; rather it is simply to determine
whether the measure of difference making suggested by the model in the
context of general causal judgments can provide similarly useful predictions
in the context of counterfactual sampling models of singular causal
judgments.
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Table 1
Causal Strength Metrics for the Unshielded Collider With Generative Causes (Figure 1) From Five Counterfactual Sampling
Models

Model Measure of difference making Conjunctive Disjunctive
AP (Jenkins & Ward, 1965) P(Eldo(C)) — P(Eldo(=C)) PA) 1 - PA)
Power PC (Cheng, 1997) AP/P(=Eldo(=C)) P(A) 1
Crediting Causality (Spellman, 1997) P(Eldo(C)) — P(E) P(—C)P(A) P(=C)P(-A)
Necessity—Sufficiency (Icard et al., 2017) P(C)P(Eldo(C)) + P(—C)P(=E | do(—=C, A)) P(C)PA) + P(=C) P(C)
Counterfactual Effect Size (Quillien, 2020)  APoc/oy T SRR 7y larey

Note.
deviation of E.

for him to get the dollar. So, overall, the Necessity—Sufficiency
model says that Joe drawing a green ball makes a difference to him
winning a dollar when he draws both a green and a blue ball or
when he does not draw a green ball: In other words, it makes a
difference except in the case where he draws a green ball, but not a
blue ball. Though it was developed specifically to account for
normality effects on causal judgment (e.g., Henne, 2023;
Kominsky & Phillips, 2020), the Necessity—Sufficiency model
has also been shown to account for interactions of normality
effects (Gill et al.,, 2022), temporal recency effects (Henne,
Kulesza, et al., 2021), action—omission effects (Henne et al.,
2019), as well as judgments in more complex causal structures
including double prevention (Henne & O’Neill, 2022).

Finally, in our causal structure of interest, the Counterfactual
Effect Size model measures difference making as AP standardized
with respect to the standard deviations of the candidate cause
and effect, 6¢ and o (Quillien, 2020). Just as AP can be interpreted
as the regression coefficient between the candidate cause and
the effect across the considered counterfactual possibilities, the
Counterfactual Effect Size model can be interpreted simply as the
correlation between the cause and the effect across the considered
possibilities. So, the Counterfactual Effect Size model has the
convenient interpretation that when people make causal judgments,
they are computing the effect size of the cause within the imagined
possibilities. While it is relatively new, the Counterfactual Effect
Size model has been shown to outperform the above models in
predicting normality effects on causal judgment, as well as causal
judgments about elections (O’Neill, Quillien, & Henne, 2022;
Quillien, 2020; Quillien & Barlev, 2021).

Counterfactual Sampling and Metacognition

If people make causal judgments by (a) considering counterfactual
possibilities through Monte Carlo sampling, (b) computing counter-
factual effects by determining whether the cause made a difference
to the effect in each counterfactual, and (c) averaging together these
counterfactual effects, two questions naturally arise with respect to
confidence: First, why might people keep track of confidence in their
causal judgments? Second, how might they estimate confidence in
such judgments? In this section, we motivate and introduce a model of
confidence in causal judgments by answering these two questions.

The Role of Confidence in Causal Judgment

Many tasks in cognitive science ask participants to make a decision
after receiving some evidence. For instance, a researcher might ask

E = effect; C = candidate cause; A = alternate cause; PC = probabilistic contrast; 6~ = standard deviation of C; 6z = standard

a participant to decide whether a stimulus is currently present or not,
whether they have previously seen a stimulus or not, or whether to
accept option A or B. A key insight of recent work on metacognition is
that in such tasks, people’s decision confidence generally tracks the
probability that their decision was correct (Fleming & Daw, 2017;
Hangyaetal., 2016; Kepecs & Mainen, 2012; Kiani & Shadlen, 2009;
Peters, 2022; Pouget et al., 2016), though this correspondence is not
exact (Peters et al., 2017; Samaha & Denison, 2020; Shekhar &
Rahnev, 2021). Moreover, researchers have shown that momentary
decreases in confidence also predict information-seeking behavior
(Desender et al., 2018; Goupil et al., 2016), error-monitoring
processes (Boldt & Yeung, 2015; Yeung & Summerfield, 2012),
and subsequent changes in mind (De Martino et al., 2013;
Resulaj et al., 2009). Finally, some argue that metacognition plays
an important role in social coordination and group decision making
(Heyes et al., 2020; Pescetelli et al., 2016).

If people rely on internal estimates of confidence to predict the
accuracy of their decisions and the decisions of others, it is likely
that confidence should play a similar role in the domain of singular
causal judgment. There are, however, two key differences between
singular causal judgments and typical tasks in metacognitive research
that warrant explanation.

Perhaps the most apparent difference is that while many tasks
involving metacognition have a clear criterion for the accuracy of
a behavioral response, there is no such criterion in the domain of
singular causal judgment. For instance, in a visual perception task,
a participant’s response of whether a stimulus was present or absent
on a given trial is correct if and only if the stimulus actually was
present on that trial. Thus, it makes sense that people would benefit
from an estimate of the probability with which their answer was
correct because they can use such an estimate to guide subsequent
behavior whether or not they know the response is correct. Now
consider the task of singular causal judgment: In the example above
where Joe won a dollar after drawing a green and a blue ball, is the
correct response that drawing the green ball caused Joe to win the
dollar? Unlike the visual perception task, there is much reasonable
disagreement about which answer is correct, and this disagreement
is central to longstanding debates in the philosophy and psychology
of causal judgment (Beebee et al., 2009; Godfrey-Smith, 2009;
Henne & O’Neill, 2022; Lewis, 1974; Lombrozo, 2010; Wolff,
2007). Moreover, there is also debate as to whether there is a binary
answer to this question or whether causal judgments are graded,
further complicating this issue (Danks, 2017; Demirtas, 2022;
Halpern & Hitchcock, 2015; Kaiserman, 2016, 2018; O’Neill,
Henne, et al., 2022; Sartorio, 2020). Given that neither answer is
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straightforwardly correct, it seems less plausible that people would
require an estimate of the probability that their judgment is correct.

Second, while confidence often helps participants to calibrate
learning across many related experiences, singular causal judgments
(by definition) pertain to single events. In the visual perception task,
for instance, a participant may integrate information about the
presence or absence of a stimulus over many trials to form a belief
about the overall prevalence of stimuli across the task and the extent
to which they should update this belief on each trial depends on their
current level of confidence. Theories of how people learn general
causal relationships share this property: They assume that people
have an internal model of whether and how much an effect
generally depends on a cause and that people incrementally update
this model in light of observed evidence according to Bayes’ rule
(Griffiths & Tenenbaum, 2005; Tenenbaum & Griffiths, 2001).
Likewise, confidence in general causal judgments reflects how
much participants’ beliefs about causal relationships have updated
in light of observed evidence (Liljeholm & Cheng, 2009; Perales &
Shanks, 2003; Shanks, 1987). Critically, however, singular causal
judgments are one shot. For instance, in studies of singular causal
judgment, participants are given full knowledge of both the general
causal structure and the sequence of events to be judged (Icard et al.,
2017; Morris et al., 2019). This type of problem precludes learning
across repeated observations because (a) all of the observable
evidence is already known, and (b) repeated observations are
impossible in practice (e.g., one cannot rewind time to recreate the
exact conditions of a traffic accident). Without a need for learning
across observations, it is unclear that people would require
confidence to calibrate this kind of learning.

If confidence in singular causal judgments does not serve the role
of providing an estimate of the probability of a correct judgment or
of moderating learning across related experiences, it is unclear what
role(s) it can still serve. To clarify this issue, we take inspiration
from past research focusing on a kind of metacognition with both of
these properties: metacognition about value-based judgments such
as whether one would prefer to snack on an apple or an orange in
the present moment (De Martino et al., 2013). Just like in causal
judgments, there is no correct value-based judgment: People
reasonably disagree about their momentary preferences. Value-
based judgments are also singular: Given fixed and known general
preferences, learning that someone chose an apple at one moment
does not predict their choice at an unrelated time above and
beyond these general preferences. Still, confidence in value-based
judgments has been found to be related to choice consistency,
making it important in predicting subsequent changes of mind
(Folke et al., 2016).

By analogy, we argue that confidence in a singular causal
judgment may be informed by the consistency of the effect of the
cause across counterfactual possibilities—what is known in the
literature as the insensitivity (Vasilyeva et al., 2018; Woodward,
2006), robustness (Gerstenberg et al., 2021; Grinfeld et al., 2020),
or portability (Hitchcock, 2012; Lombrozo, 2010) of the causal
relationship. In other words, people should be more confident in
singular causal judgments when the candidate cause makes a similar
difference to the effect across many imagined counterfactual
possibilities compared with when the effect of the candidate cause
on the effect varies widely across these possibilities. Consider again
the introductory example. If it is guaranteed that Joe will draw a blue
ball, drawing a green ball always allows him to win the dollar. So, in

this case of a robust causal relationship, one can be confident that
drawing the green ball caused him to win the dollar. But if Joe is
equally likely to draw a blue ball or not—a less robust relationship—
one should be less confident that drawing the green ball caused him
to win the dollar because drawing the green ball only sometimes
makes a difference. This framing helps explain why people might
estimate confidence in singular causal judgments even when strict
interpretations in terms of accuracy are not readily applicable to
such estimates: Similar to confidence in value-based decisions,
confidence in singular causal judgments carries information about
how likely an identified causal relation is to generalize to novel
circumstances. As a result, confidence in these judgments can still
inform behavior like information seeking, changes of mind, social
coordination, and group decision making (Peters, 2022).

A Precision Model of Confidence

If confidence in singular causal judgments is meant to signal the
robustness of a causal relation across many different circumstances,
how might people estimate confidence? The counterfactual sampling
models of causal judgment introduced in the previous section assume
that causal judgments are estimates of the degree to which a change
in the candidate cause results in a change in the effect. Additionally,
they make the further assumption that people compute these estimates
as an average of a distribution of specific causal effects over a set
of considered possibilities. But this distribution of specific causal
effects can carry more information than just the average: In particular,
it also carries information about its precision (i.e., its inverse
variance). That is, if the considered possibilities concentrate tightly
around some given value, the average provides a more or less
complete description of the difference made by the candidate
cause to the effect. If, in contrast, the candidate cause has a strong
causal effect in some possibilities but a weak or even preventative
effect in others, then the average provides a much less complete
description of that effect. Overall, then, the precision of the
distribution over specific causal effects provides a normative
indicator of how well the average summarizes the entire distribution
(Figure 2A, blue).

In the field of metacognition, confidence ratings of continuous
decisions are often modeled in exactly this way (Liljeholm, 2015; Ma
& Jazayeri, 2014; Meyniel & Dehaene, 2017; Meyniel et al., 2015;
Navajas et al., 2017; Pouget et al., 2016; Yeung & Summerfield,
2012). Notably, this model of confidence assumes that people’s
confidence ratings are normative in the sense that they are higher for
causal relationships that are robust than those that are not robust
(Figure 2, dashed arrow b). This assumption may seem
unnecessarily strong because it could be that confidence ratings
instead reflect a simple heuristic or something else altogether.
Counterfactual sampling models, however, already assume that
people (a) imagine counterfactuals using Monte Carlo sampling
and (b) compute a distribution of counterfactual effects when
making judgments. It is difficult to see why people would undergo
an intensive procedure to normatively produce causal judgments
only to ignore this information when rating confidence. If the
counterfactual sampling account is correct, then we can safely assume
that confidence ratings reflect robustness. Overall, our proposal is that
if people’s causal judgments are an average of a distribution of causal
effects specific to a set of considered possibilities, they should be
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able to report their degree of confidence using the precision of this
distribution.

To verify the robustness of our results and to highlight the
flexibility of our account, we considered four different possible
measures of precision: variance, standard deviation, entropy, and
coefficient of variation.® In the causal structure of interest, the
candidate cause either makes a difference to the effect or not within
any single possibility. As a result, the counterfactual effects
predicted by all models except the Counterfactual Effect Size
model follow a Bernoulli distribution. Under the additional
assumption that people sample approximately the same number of
counterfactual possibilities across contexts, confidence can be
calculated as a simple function of the mean (Figure 3; see
Supplemental Table 1 for equations). The Counterfactual Effect Size
model standardizes the specific causal effects by the standard
deviation of the candidate cause and effect. So, for this model,
confidence is also scaled by this constant. Overall, entropy, standard
deviation, and variance suggest that confidence should be highest
when the corresponding judgment is extreme (close to 0 or 1),
whereas the coefficient of variation predicts that confidence should
monotonically increase with causal judgments (Figure 3). While
these relations hold in our causal structure of interest, we note that
they only apply when the differences made by the candidate cause
to the effect follow a Bernoulli distribution with a constant sample
size: When the effect is a continuous variable, when the cause
sometimes prevents the effect, or when people systematically
imagine different numbers of counterfactuals across contexts,
confidence may have a different relation to causal judgments.

Figure 3

The Predicted Relationship Between Mean Causal Judgment and
Mean Confidence by Four Measures of the Precision of a Distribution
in the Conjunctive/Disjunctive Unshielded Collider

Measure

Coefficient of Variation
== Entropy
== Standard Deviation
Variance

Predicted Mean Confidence
(Normalized)

Predicted Mean Causal
Judgment (Normalized)

Note. Because we allow a linear relationship between model predictions
and empirical means, mean causal judgment and confidence are depicted on
normalized scales. The entropy, standard deviation, and variance measures
agree that confidence should be highest when the causal judgment is very high
or very low and that confidence should be lowest when making intermediate
causal judgments. In contrast, the coefficient of variation predicts that
confidence should increase with causal judgments. For the Counterfactual
Effect Size model, this relationship also depends on the estimated standard
deviations of the candidate cause and effect. See the online article for the color
version of this figure.

Understanding the Precision Model of Confidence

In this section, we demonstrate in a simple example how our
precision model of confidence in causal judgments predicts related
effects of normality (i.e., the statistical probability of an event) on
causal judgments and confidence in those judgments. For simplicity,
we focus here on the AP measure of difference making and the
standard deviation measure of precision (other measures are estimated
using the exact same process). Recall the earlier example where Joe
wins a dollar if he draws a green ball from the left box and a blue
ball from the right box, he draws both a green and a blue ball, and
he wins the dollar (Figure 1). Did Joe win the dollar because he drew
a green ball from the left box?

As discussed above, counterfactual sampling models predict that
people answer this question by imagining a range of possibilities,
where the probability of each event occurring in a given possibility
is roughly proportional to its objective probability. Figure 4 depicts
three such cases. In all three cases, there is a 50% likelihood that
Joe will draw a green ball from the left box (the candidate cause, C).
The likelihood that he will draw a blue ball from the right box
(the alternate cause, A) is either 10% (Figure 4A), 50% (Figure 4B),
or 90% (Figure 4C). Accordingly, counterfactual sampling models
predict that among the alternative possibilities imagined when
making a causal judgment, the probability of drawing a green ball is
close to 50%, and the probability of drawing a blue ball is
proportional to either 10%, 50%, or 90% (Figure 4A—4C).

Next, counterfactual sampling models predict that people evaluate,
separately in each possibility, whether Joe drawing the green ball
(or not) made a difference to him winning the dollar (or not).
Specifically, within each possibility, people manipulate whether Joe
drew the green ball or not (C), and they check whether Joe draws the
dollar (E; represented by half-filled nodes in Figure 4A—4C). In this
causal structure, manipulating whether Joe draws a green ball only
effects whether he won the dollar when he also drew a blue ball
(A) because without drawing a blue ball, there is no way for drawing
the green ball to help him win the dollar. So, graphically, AP
predicts that drawing a green ball makes a difference to winning
the dollar precisely when the node for the effect E is half-filled
(Figure 4D—4F).

Finally, counterfactual sampling models predict that people
compute summary statistics over the distribution of specific causal
effects to form different judgments. Specifically, their reported
causal judgment is the mean of the distribution (depicted as points in
Figure 4G). We can see that as the probability that Joe draws a blue
ball from the right box increases, so do causal judgments of the
green ball because according to the AP model, Joe drawing the
green ball can only be said to make a difference to winning the dollar

*1t can be argued that the standard error provides a more normative
measure of precision because it takes into account how many counterfactual
samples were considered when making a judgment. Indeed, previous work
suggests that people only consider a small number of possibilities in similar
tasks (Phillips et al., 2019; Vul et al., 2014). However, it is experimentally
difficult to determine how many samples one considers when making a
judgment, precluding us from using this information in our model predictions.
Additionally, we have no reason to expect that our manipulations of causal
structure and statistical normality influence the number of samples participants
consider, meaning that this parameter is likely constant across our experiment,
and so the standard error and the standard deviation yield the same predictions
in this context. So, while we do not explore this measure in the current article,
future work may dissociate these competing hypotheses.
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Figure 4
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Note. (A)—(C) Depiction of the counterfactual sampling process when the probability of the alternate cause A is either (A) .1, (B) .5, or (C) .9.

Each box depicts an imagined possibility where events with filled no

des occur and those with unfilled nodes do not occur. Half-filled nodes

depict that within each possibility, the C is intervened upon to see whether it makes a difference to the E. (D)—(F) Histograms of the difference
the candidate cause made to the effect predicted by AP when the probability of the alternate cause is either (D) .1, (E) .5, or (F) .9. (G) Predicted
causal judgment using mean AP as a function of the probability of the alternate cause. (H) Predicted confidence using the standard deviation of
AP as a function of the probability of the alternate cause. The y-axis is reversed so that smaller standard deviations indicate higher confidence.
E = effect; C = candidate cause; A = alternate cause. See the online article for the color version of this figure.

when he draws the blue ball. This increase in causal judgments of the
candidate cause when the normality of the alternate cause increases
is known as causal superseding and has been observed in empirical
data (Kominsky et al., 2015; Morris et al., 2019).

According to our precision model of confidence, however, people
can report upon more than just the mean of this distribution. Notably,
they can report their confidence using a measure of precision. The
standard deviations of the corresponding distributions are depicted
in Figure 4H. Here, we see a different pattern than for the means:
People are expected to be confident when the probability of drawing
the blue ball is low (Figure 4A) or high (Figure 4C), but they are
expected to be uncertain when this probability is close to 50%
(Figure 4B). This is because drawing the green ball has a much
more variable effect on winning the dollar when the probability of
drawing the blue ball is 50%. Without any information about
whether Joe would have drawn a blue ball, it is difficult to predict
whether or not drawing the green ball would make a difference to
winning the dollar. When the probability of drawing a blue ball is

low, drawing the green ball rarely makes a difference to winning
the dollar, so one can be confident that the green ball did not cause
Joe to win the dollar. Likewise, when the probability of drawing
a blue ball is high, drawing the green ball almost always makes
a difference to winning the dollar, so one can be confident that
the green ball did cause Joe to win the dollar. Overall, then, we have
the U-shaped relationship between predicted causal judgment and
predicted confidence depicted in Figure 3: People should be least
confident when their causal judgment is close to the midpoint of
the scale.

The Current Article

Our model of confidence in causal judgment is a conjunction of
counterfactual sampling models of causal judgment and precision
models of confidence: Given a distribution of differences the
candidate cause could have made to the effect, causal judgments are
reports of the average difference made by the candidate cause, and
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confidence ratings are reports of the variation in these differences.
To test this model, we replicated and extended a recent study
measuring quantitative shifts in causal judgments with respect to the
probabilities of the candidate and alternate causes, P(C) and P(A)
(Morris et al., 2019). Previous work has shown that causal judgments
of C tend to decrease with P(C) but increase with P(A) in conjunctive
causal structures and that they increase with P(C) but decrease with
P(A) in disjunctive causal structures (Gill et al., 2022; Icard et al.,
2017; Kominsky et al., 2015; Kominsky & Phillips, 2020; Morris
et al., 2019). Because each of the above measures of uncertainty
predicts that people’s confidence in their causal judgments is a
function of the causal judgments themselves, they predict that
confidence should also vary with P(C) and P(A): Specifically,
confidence should be high when causal judgments are predicted
to be very high or low, and confidence should be low when causal
judgments are predicted to be intermediary (Figure 3). Accordingly,
we also measure participants’ confidence in their causal judgments.

Our study thus provides two tests of different assumptions made
by counterfactual sampling models of causal judgment, visualized
as arrows in Figure 2. First, as in Morris et al.’s (2019) study, we
use causal judgments to evaluate whether each model describes
the kind of difference making relevant to causal judgment. So, if
a particular model fails to predict causal judgments, we would
have reason to believe that another notion of difference making is
required to account for this pattern in judgments (Figure 2, dashed
arrow a).

Second, given that a model predicts causal judgments, we use
confidence ratings to test the other assumptions made by the
counterfactual sampling framework. If a model predicts causal
judgments but not confidence ratings, then although we have
evidence that this notion of difference making generally captures
people’s causal judgments, an auxiliary assumption must be amended
to predict confidence. One possibility is that the precision account is
wrong and that confidence ratings are actually nonnormative: Even
if people sample many possibilities to ensure that the estimated
counterfactual effect is robust to changes in background circum-
stances, they discard this information when rating confidence (dashed
arrow b in Figure 2). This interpretation, however, would require a
strong justification for why people would ignore information about
the robustness of a causal effect after just employing an intensive
and normative procedure to generate this information when making a
causal judgment. Instead, we advocate for an alternative interpretation
whereby confidence ratings can be used to determine whether people
use Monte Carlo sampling to simulate alternative possibilities (dashed
arrow c in Figure 2). So, if a model predicts causal judgments but not
confidence ratings, we have reason to doubt that people come to this
judgment using the particular pattern of sampling typically assumed
by counterfactual sampling models. In this case, revising this model
would require proposing an alternative sampling mechanism with
similar predictions of causal judgment but different predictions of
confidence (dashed arrow c in Figure 2).

Finally, if any models are able to jointly predict causal judgments
and confidence ratings across our experimental conditions, this
would provide strong evidence both for the measure of difference
making and for the broader mechanism of counterfactual sampling
in causal judgment because these measures were developed solely to
predict causal judgments and not confidence. In sum, we compared
model predictions of causal judgments to empirical judgments to test
the measures of difference making assumed by different
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counterfactual models, and we compared model predictions of
the precision of counterfactual effects with empirical confidence
ratings to test the specific commitment to sampling made by these
models.

Method
Transparency and Openness

We report how we determined our sample size, all data exclusions,
all manipulations, and all measures in the study, and we follow
Journal Article Reporting Standards (Kazak, 2018). All data, analysis
code, and research materials are available at https://osf.io/sm6qg/.
Data were analyzed using R, Version 4.1.2 (R Core Team, 2021), and
the cmdstanr interface to the probabilistic programming language
Stan (Carpenter et al., 2017; Gabry & Ce$novar, 2021). This study’s
design and its analysis were not preregistered.

Participants

Based on the sample size from Morris et al. (2019), along with the
expectation that normality effects on confidence would be smaller
than effects on causal judgment, we recruited 3,020 participants
from Prolific (https://prolific.co). All participants were from the
United States, spoke English as their native language, and provided
informed consent in accordance with Duke University’s institutional
review board. The participants completed the task in an average of
7.5 min and were compensated with $0.75. One hundred eighteen
(3.9%) participants were excluded from our analyses because they
reported not paying attention to the task in response to an explicit
attention check after completion of the task (see Supplemental
Material). Data were analyzed from the remaining 2,902 participants
(Myge = 36.93, SD,g. = 13.23). One thousand four hundred twenty-
one participants identified their gender as female, 1,444 as male,
35 as other, and two participants chose not to report their gender.

Materials

Stimuli were six vignettes similar to the vignette used in Morris
et al.’s (2019; see Supplemental Material) study. Each vignette
included a deterministic causal system involving two candidate
causes (which could occur independently with defined probabilities)
and an outcome that would occur if and only if both candidate
causes occurred (conjunctive structure) or if either candidate cause
occurred (disjunctive structure). In all vignettes, the two candidate
causes always occurred, and so the outcome also always occurred.
The outcome was positive (e.g., winning a dollar) in half of the
vignettes and negative (e.g., having to pay for drinks) in the other
half. Alongside each vignette, the participants were shown an
image that briefly summarized the vignette and also defined the
probability of each candidate cause. All stimuli, materials, and
code are accessible via the Open Science Framework (https://osf
.10/smb6qg/). An example stimulus is depicted in Figure 5.

Procedure

Ina 10 X 10 X 2 X 6 sparsely sampled within-participants design
(probability of candidate cause: {.1, .2, ... 1}; probability of
alternate cause: {.1, .2, ... 1}; causal structure: {Conjunctive,
Disjunctive}; vignette), participants read one version of each of the
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Figure 5

Example Stimulus Presented to the Participants

Left box Right box

(20222 [eeees

)

A person, Joe, played a casino game where he reached into two boxes and blindly drew a

ball from each box.

Conjunctive: In this game, he wins a dollar
if and only if he gets a green ball from the left
box and a blue ball from the right box. If he
doesn’t get a green ball from the left box or
he doesn’t get a blue ball from the right box,

he doesn’t win a dollar.

Disjunctive: In this game, he wins a dollar
if he gets a green ball from the left box or a
blue ball from the right box (or both). If he
doesn’t get a green ball from the left box and
he doesn’t get a blue ball from the right box,

he doesn’t win a dollar.

2151

i
Dollar = Green AND Blue

Joe closed his eyes, reached a hand into each box, and chose a green ball from the left box

and a blue ball from the right box. So Joe won the dollar.

To what degree did Joe win the dollar because he drew a green ball from the left box?

How confident are you in your response to the previous question?

Note. The participants were asked to read one version of the vignette (conjunctive or disjunctive). The image was presented
along with the vignette and contained information about the probabilities of the candidate and alternate causes. In this example,
the probability of the candidate cause (drawing a green ball) is .3, and the probability of the alternate cause (drawing a blue ball)

is .6. See the online article for the color version of this figure.

six vignettes (participants each read six vignettes total). The
probability of each candidate cause and the causal structure was
randomly assigned for each vignette, and the order of vignettes was
randomized. For each vignette, participants read the vignette and
inspected a corresponding image, which added information about
the probability of each event occurring. The participants then
responded to the questions “To what degree did [the effect occur]
because [the candidate cause occurred]?” and “How confident
are you in your response to the previous question?” on continuous
slider scales ranging from not at all (coded as 0) to totally (coded
as 1).

Analysis

As a descriptive model of the effects of the normality of
the candidate and alternate causes on both causal judgments and
confidence ratings, we fit a bivariate Gaussian process (GP) model
using the probabilistic programming language Stan (Carpenter et al.,
2017; Stan Development Team, 2020, 2021). The GP has two main
advantages as a statistical model. First, it is known that normality
effects on causal judgments and confidence are in fact nonlinear
(Morris et al., 2019), and the GP can capture such nonlinear
relationships. Second, it assumes that effects are smooth, which helps
to penalize overfitting and reduce statistical errors (Rasmussen &
Williams, 2005). We estimated the mean and variability of causal
judgments and confidence ratings with separate latent GPs for
conjunctive and disjunctive causal structures, including a vignette-
specific GP to account for vignette-level effects (see Supplemental
Material for mathematical details). Specifically, the GPs jointly
modeled the mean and precision parameters of an ordered Beta
likelihood using a logit and log link function, respectively (Kubinec,
2020), which accounts for the fact that both causal judgments and
confidence ratings were bounded between 0 and 1 with many
responses at precisely these bounds. To test for changes with respect

to the probability of each cause, we also jointly estimated the
gradients of each GP with respect to the probabilities of the
candidate and alternate causes, and we report the largest gradients as
B values (Riithiméki & Vehtari, 2010; Solak et al., 2003). For each
parameter, we report the posterior median and 95% highest density
intervals (HDIs). We used a Bayesian analog of the p value
computed from the probability of direction with a threshold of .05 to
test for effect existence (Makowski et al., 2019), and we considered
any parameter with a Bayes Factor (BF) greater than 10 as
statistically significant. For supplementary results, vignette-level
effects, and model diagnostics, see Supplemental Material.

To compare the predictions of the different counterfactual sampling
models, we fitted them each to participants’ causal judgments and
confidence ratings as generative models in Stan. For simplicity, past
work has assumed that the subjective counterfactual sampling
probability of the candidate and alternate causes is equal to their
objective probabilities (Morris et al., 2019; Quillien, 2020). Here,
we relaxed this assumption by instead assuming that the subjective
counterfactual sampling probabilities were positive monotonic
functions of the objective probabilities, which could vary by causal
structure (see Supplemental Material for fitted counterfactual
sampling probabilities). Because we did not want to assume that
the model predictions were on the same scale as participants’
judgments, we assumed a linear relationship between the mean
counterfactual difference and mean causal judgments. Similarly,
we also assumed a linear relationship between the precision of
counterfactual differences and mean confidence. For each model, we
report the estimated mean causal judgment and confidence rating
per condition. For formal model comparisons of generative
performance, we used the approximate leave-one-out cross-validated
expected log pointwise predictive density (ELPD_LOO) separately
for causal judgments and confidence, which evaluates the ability of
each model to predict causal judgments and confidence ratings on
held-out data (Vehtari et al., 2017).
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Results
Causal Judgment

We first sought to replicate previous results showing that causal
judgments vary as a function of the probability of the candidate
cause (i.e., the cause that we ask participants to judge) and the alternate
cause (i.e., the cause that participants do not judge; Icard et al., 2017;
Kominsky et al., 2015; Morris et al., 2019). Figure 6A and 6B
depicts mean causal judgments and predictions from each model,
respectively. In conjunctive structures, causal judgments of the
candidate cause tended to decrease with the probability of the
candidate cause ( = —.55, 95% HDI [-.93, —.21], P < .001, BF =
1,294) and increase with the probability of the alternate cause (f =
.19, 95% HDI [.06, .33], P < .001, BF = 1,369). In disjunctive
structures, causal judgments tended to increase with the probability
of the candidate cause (f = .10, 95% HDI [.004, .20], P = .04, BF =
20) and decrease with the probability of the alternate cause (fp =
—-.08, 95% HDI [-.17, —.01], P = .01, BF = 77).

We then asked whether these patterns in causal judgments were
predicted by counterfactual models. To answer this question, we
computed the approximate ELPD_LOO (Vehtari et al., 2017) for
each model, and we computed differences of model performance
relative to the best performing model (Figure 7, left panel). Here, we
report the performance of the best-performing measure of precision
for each measure of difference making, though results were similar
across different measures of precision. As found in previous works
(Morris et al., 2019; Quillien, 2020), counterfactual sampling models
were largely successful in predicting normality effects on causal
judgments. In particular, the Counterfactual Effect Size model had the
best predictions of causal judgments (ELPD_LOO = —-11751.03, SE=
103.26), although the Necessity—Sufficiency model (ELPD_LOO =
—11757.19, SE = 104.19, AELPD_LOO = —6.16, SE = 9.12) and the
Crediting Causality model (ELPD_LOO = —11758.35, SE = 103.13,
AELPD_LOO = -7.32, SE = 4.95) did not make significantly worse
predictions. The Power PC model (ELPD_LOO = —11803.07, SE =

Figure 6
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104.22, AELPD_LOO = —-52.04, SE = 12.47) and the AP model
(ELPD_LOO = —-11781.13, SE = 104.25, AELPD_LOO = -30.10,
SE = 10.04) performed significantly worse than the Counterfactual
Effect Size model in predicting causal judgments.

Confidence

Next, we asked whether participants’ confidence in their causal
judgments also varied with respect to the probability of the candidate
and alternate causes. Figure 8A and 8B depicts mean confidence
and predictions from each model, respectively. In conjunctive
structures, participants tended to be less confident in their causal
judgments with increases in the probability of the candidate cause
(B = —-.09, 95% HDI [-.18, —.02], P = .02, BF = 30) and more
confident with increases in the probability of the alternate cause (f =
.06, 95% HDI [.01, .12], P = .01, BF = 30). There was also a small
region in which participants were more confident with increases in
the probability of the candidate cause ( = .06, 95% HDI [.01, .12],
P = .04, BF = 14), indicating that normality effects on confidence
are likely nonmonotonic. In contrast, in disjunctive structures,
participants tended to be more confident as the probability of the
candidate cause increased (p = .11, 95% HDI [.01, .22], P = .03,
BF = 28), though there was no effect of the probability of the
alternate cause (f = .03, 95% HDI [-.04, .09], P = .29, BF = 3).
White arrows in Figure 8 depict regions where these effects were
significant. However, we note that confidence was very high overall
(M = .84, SD = .22) and that the observed effects on confidence were
small compared with the corresponding effects on causal judgment.

Finally, we tested whether precision models of confidence, in
conjunction with counterfactual sampling models of causal
judgment, predicted participants’ confidence in their causal judg-
ments. Figure 7 (right panel) depicts the performance of each model
in predicting confidence ratings. Here, the Necessity—Sufficiency
model had the best predictions of confidence ratings (ELPD_LOO =
—-9703.16, SE = 90.70). The Counterfactual Effect Size model

Inferred Mean Causal Judgment (A) Compared With Model Predictions Using the Standard Deviation Measure of Precision (B)
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Figure 7
Relative Model Performance for Causal Judgments and Confidence Ratings
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confidence, and lower values indicate worse performance. While most models perform similarly well at predicting causal
judgments, only the Necessity—Sufficiency model predicts causal judgments and confidence. Points indicate means, and error
bars indicate twice the standard error. PC = probalistic contrast. See the online article for the color version of this figure.

(ELPD_LOO = -9716.63, SE = 90.74, AELPD_LOO = —13.47,
SE = 5.96), the Crediting Causality model (ELPD_LOO =
—9715.09, SE = 90.68, AELPD_LOO = —11.93, SE = 5.47), the

Relationships Between Causal Judgments and
Confidence

As a secondary hypothesis, we also sought to determine whether

Power PC model (ELPD_LOO = -9733.94, SE = 90.28, : . L. .

there were changes in the estimated variability of causal judgments
AELPD_LOO = -30.78, SE = 7.36), and the AP model (Figure 9A) and confidence (Figure 9B). In conjunctive structures,
(ELPD_LOO = -972345, SE = 90.58, AELPD_LOO = variance in causal judgments of the candidate cause tended to

—20.29, SE = 5.96) all made significantly worse predictions of
confidence. In sum, the Necessity—Sufficiency model outperformed
all other models in predicting confidence in causal judgments.

Figure 8

increase with the probability of the candidate cause (f = .15, 95%
HDI [.08, .23], P < .001, BF = 2003) and decrease with the
probability of the alternate cause (f = —.04, 95% HDI [-.08, —.01],

Mean Confidence in Causal Judgment (A) Compared With Model Predictions Using the Standard Deviation Measure of Precision (B)
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Figure 9
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Normality Effects on the Variance of Causal Judgments and Confidence Ratings
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alternate causes. The length of the arrow is proportional to the size of the effect, and the arrows point in the direction of increasing
variance. See the online article for the color version of this figure.

P = .006, BF = 99). Variance in confidence ratings also tended to
increase with the probability of the candidate cause (f = .03, 95%
HDI[.001, .06], P = .04, BF = 39) and decrease with the probability
of the alternate cause (f = —.02, 95% HDI [-.03, —.001], P = .02,
BF = 14). In disjunctive structures, variance of causal judgments
tended to decrease with the probability of the candidate cause (f =
—.04,95% HDI [-.09, —.001], P = .04, BF = 20) and increase with
the probability of the alternate cause (f = .03, 95% HDI [.006, .07],
P =.007, BF = 83), though we found little evidence for effects of the
probability of either cause on the variance of confidence ratings (p =
—.03, 95% HDI [-.07, .01], P = .12, BF = 9).

Overall, the mean and variance were strongly negatively correlated
for both causal judgments (r = —.87, 95% HDI [-.93, —.81], P <
.001, BF > 10,000) and confidence (r = —.96, 95% HDI [-.99,
—-91], P < .001, BF > 10,000). There was weak evidence for
a correlation between mean causal judgment and confidence (r =
.31, 95% HDI [.002, .60], P = .04, BF = 4), but there was no
evidence for a correlation between the variance of causal judgments
and mean confidence (r = —.03, 95% HDI [-.38, .26], P = .81, BF =
44). So, even though the variance of causal judgments and mean
confidence showed qualitatively similar trends, it was not the case
that participants agreed with each other more when they were more
confident about their causal judgments.

Discussion

In this article, we proposed an extension of counterfactual
sampling models of causal judgment to include confidence in those
judgments. Our extension, following recent work in metacognition,
is simple: While people’s causal judgments are explained by the
average difference the candidate cause is thought to make to the
effect, their confidence is the precision of the distribution around

this estimate, using, for instance, the inverse standard deviation
(Ma & Jazayeri, 2014; Meyniel & Dehaene, 2017; Meyniel
et al., 2015; Navajas et al., 2017; Pouget et al., 2016; Yeung &
Summerfield, 2012). Our model made the novel prediction that
people should be more or less confident in their causal judgments
depending on the probability of each of the causes. To test different
variations of the model, we replicated and extended an experiment
by Morris et al. (2019). We found that participants’ confidence
decreased with the probability of the candidate cause and increased
with the probability of the alternate cause in conjunctive causal
structures, whereas their confidence increased with the probability
of the candidate cause in disjunctive causal structures. Critically,
these patterns were best predicted by a single model: the Necessity—
Sufficiency model. Because the Necessity—Sufficiency model was
developed solely to explain causal judgments (with no regard for
confidence), our results provide strong support for this model.

In contrast, all of the other counterfactual sampling models
provided significantly worse predictions of either causal judgments
or confidence ratings. Although the Counterfactual Effect Size
model predicted causal judgments well in both structures, it failed to
predict confidence in disjunctive causal structures: It predicted that
confidence would decrease with the probability of the candidate
cause when it in fact increased. Similarly, the Crediting Causality
model predicted causal judgments well in conjunctive structures,
but not in disjunctive structures, where it predicted that judgments
would decrease with the probability of the candidate cause when
they actually increased. In conjunctive structures, it also predicted
that confidence would increase with increases in the probability of
the candidate cause and decreases in the probability of the alternative
cause, which is the opposite of what was actually found. The Power
PC model was able to predict causal judgments and confidence in
conjunctive structures, but it predicted no changes in either rating in
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disjunctive structures. The AP model significantly predicted causal
judgments in both causal structures, but it also predicted no effect of
the probability of the candidate cause on confidence in disjunctive
structures. Thus, each model predicted some features of causal
judgments and confidence in those judgments while failing to predict
others.

It may be tempting to conclude, then, that our results provide
decisive evidence for the Necessity—Sufficiency model and against
the other counterfactual sampling models. To the contrary, we found
that the Necessity—Sufficiency model had its own explanatory gap:
Notably, it did not predict our replication of Morris et al.’s (2019)
findings that people’s causal judgments decreased with the probability
of the alternate cause in disjunctive structures. Moreover, we also
replicated past findings that all models were successful at predicting
causal judgments in conjunctive structures, and all but the Crediting
Causality and the Power PC models were successful in disjunctive
structures (Morris et al., 2019).

How should we revise our models of causal judgment in light
of these varied results? To answer this question, we return to our
theoretical framework introduced in Figure 2. First, we can use causal
judgments as a test of which particular kind of difference making is
relevant to causal judgment (Figure 2, dashed arrow a). While none of
the models provided perfect predictions, most of the model predictions
were quantitatively similar to the observed patterns in causal judgments,
making it difficult to provide clear evidence against them. Next,
because models that give similar predictions of causal judgments give
qualitatively different predictions of confidence (and in fact most
models failed to predict confidence), we can use confidence ratings as a
secondary test of these models. Of course, one interpretation is that
confidence ratings, like causal judgments, directly reflect which kind of
difference making is relevant to causal judgment, so only the
Necessity—Sufficiency model is acceptable. But given that other
measures do predict causal judgments, we think it is premature to
dismiss them entirely on the basis of the confidence ratings alone.
Another possibility is that these models failed to predict confidence
because our precision account is simply false (Figure 2, dashed arrow
b), and confidence is estimated using some other procedure such as a
nonnormative heuristic (Adler & Ma, 2018) or a more complex second-
order inference (Fleming & Daw, 2017). As we argue in the
Introduction section, however, this interpretation would require a
justification of why people would use an intensive sampling procedure
when making a causal judgment only to ignore this information when
making metacognitive assessments. Moreover, we found that—as
predicted by our normative account—confidence ratings were sensitive
to normality and quadratically related to causal judgments, making it
unlikely that our participants simply had poor metacognitive sensitivity.

Instead, we advocate for a third interpretation whereby
confidence ratings reflect whether counterfactual effects are
computed using a standard Monte Carlo sampling scheme
(Figure 2, dashed arrow c). So, the models that failed to predict
confidence could be revised to make use of a different pattern
sampling. For instance, existing counterfactual sampling models
assume that people simulate a sufficiently large number of
counterfactual possibilities to estimate counterfactual effects and
that this sample size is relatively constant across contexts. This
sampling scheme could be modified by assuming that people only
simulate a small number of possibilities due to time pressure or
general capacity limits (Phillips et al., 2019; Vul et al., 2014), that
the number of possibilities simulated depends on contextual

2155

factors, or that people are more inclined to consider possibilities
similar to what actually happened (Lucas & Kemp, 2015; Quillien
& Lucas, 2023). In any case, it is clear that future work will have to
explore these possibilities to converge upon a unified account of
both causal judgments and confidence.

One limitation with the present study is that in focusing on
counterfactual sampling models, we were unable to provide direct
evidence that counterfactual sampling models outperform other
kinds of models of confidence in causal judgments. For example,
process theories propose that causal judgments reflect assessments
of the transmission of physical quantities like force from the cause to
the effect (Wolff, 2007), and social cognitive theories propose that
causal judgments reflect prior ascriptions of blame or responsibility
(Alicke et al., 2011; Sytsma, 2021). There remains debate between
proponents of these different theories (Henne & O’Neill, 2022;
Kominsky & Phillips, 2020; Krasich et al., 2024). However, we still
interpret our results in favor of counterfactual theories because, to
our knowledge, they are the only theories that are currently capable
of making quantitative predictions of normality effects on causal
judgments, so they are also the only theories capable of predicting
such effects on confidence. Although we found that people make
causal judgments and confidence ratings in a way that is consistent
with counterfactual sampling models, and although participants’
inferred counterfactual sampling probabilities strongly resemble
representations of probability in other domains (see Supplemental
Material; Tversky & Kahneman, 1992; Zhang & Maloney, 2012),
another limitation is that we did not directly measure counterfactual
judgments or confidence in counterfactual judgments. So, following
other research demonstrating counterfactual representations during
causal judgment (Gerstenberg et al., 2017; Henne & O’Neill, 2022;
Krasich et al., 2024), future work could look for similar indices of
counterfactual representations when rating confidence.

More work is needed to investigate metacognitive assessments
of causal judgments in more ecologically valid domains. In our
task, participants had full information about the relevant variables,
the causal structure, and the actual events that took place, so they
reported very high confidence overall. This design had the advantage
that any uncertainty reported by participants necessarily comes
internally from within the participants themselves, allowing us to
isolate that uncertainty as coming from the hypothesized sampling
process. But people most often make causal judgments in the presence
of these types of uncertainty in addition to mere probabilistic
uncertainty. It is also widely known that metacognition of perceptual
and value-based decisions affects learning, exploration, and changes
of mind (Folke et al., 2016; Kepecs et al., 2008; Shea et al., 2014).
Future work, then, should explore the ways in which metacognition
about causal judgments impacts subsequent cognition. For instance,
despite differences between the problems of singular and general
causal judgment, it is unclear whether people might use similar
strategies in rating confidence for the two kinds of judgment
(Liljeholm, 2015). It is also unclear whether varying degrees of
confidence in causal judgments might impact decision making in
other tasks involving causal representations such as one-shot
learning, reversal learning, and reward-based learning (Chambon
etal., 2018; Lehmann et al., 2019; Rouault et al., 2022; Weiss et al.,
2021). Finally, future research may investigate the relationship
between confidence and causal judgments in other causal structures.
We replicated previous findings that mean causal judgment and
confidence are quadratically related (Liljeholm, 2015; O’Neill,
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Henne, et al., 2022), and our precision model of confidence
provides one explanation for this relation: Both judgments reflect
different summary statistics of the same underlying distribution
of counterfactual differences. When the effect is binary, such
differences are Bernoulli-distributed, which necessarily implies a U-
shaped relation between causal judgments (see Figure 3). So, future
work may benefit from extending counterfactual models to cases
where this relation between confidence and causal judgments need
not hold (e.g., where the effect is a continuous variable), allowing
for an empirical dissociation of whether confidence in causal
judgments are sensitive to uncertainty in the estimate of the mean
counterfactual difference, variability in the distribution of counter-
factual differences, or both.

Constraints on Generality

In this article, we recruited English-speaking participants from
the United States and presented them with text-based stimuli.
However, we would expect normality effects on causal judgments to
generalize to participants from various social groups, as well as to
experiments with other kinds of stimuli (see Gerstenberg & Icard,
2020; Henne & O’Neill, 2022; Henne, O’Neill, et al., 2021, for
examples with video-based stimuli). We manipulated statistical
norms by varying the probability of different events, but similar
findings have also been found with prescriptive or social norms that
are presumably more sensitive to cultural factors (e.g., Giiver &
Kneer, 2023; Icard et al., 2017). Finally, we note that the predicted
quadratic relationship between mean causal judgment and mean
confidence is specific to causal structures with binary variables, and
so this relationship should not be expected to generalize to cases
with continuous variables.

Conclusion

In sum, we proposed an extension of counterfactual sampling
models of human causal judgment to additionally predict confidence
in those judgments, allowing us to use confidence ratings as a test
of the sampling mechanism underlying recent counterfactual
models of causal judgment. When compared with judgments made
by participants, one version of this model (using the Necessity—
Sufficiency measure of causal strength) was able to simultaneously
predict causal judgments and confidence in those judgments (Icard
etal.,2017). Our results, in addition to furthering our understanding of
causal judgment, are an important step in determining the mechanisms
behind metacognitive assessments of complex decisions.
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